Files
opro_demo/DEPLOYMENT.md

359 lines
7.6 KiB
Markdown
Raw Normal View History

# Docker 部署指南
本文档说明如何在无外网访问的服务器上部署系统提示词优化工具。
## 部署方案
本项目提供两种部署方案:
### 方案 A: All-in-One 镜像(推荐,适用于无外网服务器)
**优点**
- 包含所有依赖:应用代码 + Ollama + LLM 模型
- 一个镜像文件,部署简单
- 无需在目标服务器上安装任何额外软件(除了 Docker
**缺点**
- 镜像文件很大10-20GB
- 传输时间较长
### 方案 B: 分离部署(适用于已有 Ollama 的服务器)
**优点**
- 镜像文件较小(~500MB
- 可以复用现有的 Ollama 服务
**缺点**
- 需要在目标服务器上单独安装和配置 Ollama
- 需要手动下载模型
---
## 方案 A: All-in-One 部署(推荐)
### 前置要求
#### 在开发机器上(有外网访问)
1. **Docker** 已安装
2. **Ollama** 已安装并运行
3. **磁盘空间**:至少 30GB 可用空间
4. 已下载所需的 Ollama 模型:
- `qwen3:14b` (主模型,~8GB)
- `qwen3-embedding:4b` (嵌入模型,~2GB)
#### 在目标服务器上(无外网访问)
1. **Docker** 已安装
2. **磁盘空间**:至少 25GB 可用空间
### 部署步骤
#### 步骤 1: 下载所需的 Ollama 模型
在开发机器上,确保已下载所需模型:
```bash
# 下载主模型(约 8GB
ollama pull qwen3:14b
# 下载嵌入模型(约 2GB
ollama pull qwen3-embedding:4b
# 验证模型已下载
ollama list
```
#### 步骤 2: 导出 Ollama 模型
```bash
# 运行导出脚本
./export-ollama-models.sh
```
这将创建 `ollama-models/` 目录,包含所有模型文件。
#### 步骤 3: 构建 All-in-One Docker 镜像
```bash
# 运行构建脚本(推荐)
./build-allinone.sh
# 或手动构建
docker build -f Dockerfile.allinone -t system-prompt-optimizer:allinone .
```
**注意**:构建过程可能需要 10-30 分钟,取决于机器性能。
#### 步骤 4: 导出 Docker 镜像
如果使用 `build-allinone.sh`,镜像已自动导出。否则手动导出:
```bash
# 导出镜像(约 10-20GB
docker save -o system-prompt-optimizer-allinone.tar system-prompt-optimizer:allinone
# 验证文件大小
ls -lh system-prompt-optimizer-allinone.tar
```
#### 步骤 5: 传输到目标服务器
使用 scp、U盘或其他方式传输镜像文件
```bash
# 使用 scp如果网络可达
scp system-prompt-optimizer-allinone.tar user@server:/path/
# 或使用 rsync支持断点续传
rsync -avP --progress system-prompt-optimizer-allinone.tar user@server:/path/
# 或使用 U盘/移动硬盘物理传输
```
#### 步骤 6: 在目标服务器上加载镜像
```bash
# 加载镜像(需要几分钟)
docker load -i system-prompt-optimizer-allinone.tar
# 验证镜像已加载
docker images | grep system-prompt-optimizer
```
#### 步骤 7: 启动服务
```bash
# 启动容器
docker run -d \
--name system-prompt-optimizer \
-p 8010:8010 \
-p 11434:11434 \
-v $(pwd)/outputs:/app/outputs \
--restart unless-stopped \
system-prompt-optimizer:allinone
# 查看启动日志
docker logs -f system-prompt-optimizer
```
**重要**:首次启动需要等待 30-60 秒Ollama 服务需要初始化。
#### 步骤 8: 验证部署
```bash
# 等待服务启动(约 30-60 秒)
sleep 60
# 健康检查
curl http://localhost:8010/health
# 应该返回:
# {"status":"ok","version":"0.1.0"}
# 检查 Ollama 服务
curl http://localhost:11434/api/tags
# 检查可用模型
curl http://localhost:8010/models
# 访问 Web 界面
# 浏览器打开: http://<服务器IP>:8010/ui/opro.html
```
---
## 方案 B: 分离部署
### 前置要求
#### 在目标服务器上
1. **Docker** 已安装
2. **Ollama** 服务已安装并运行
3. 已拉取所需的 Ollama 模型:
- `qwen3:14b` (主模型)
- `qwen3-embedding:4b` (嵌入模型)
### 部署步骤
#### 步骤 1: 构建应用镜像
```bash
# 在开发机器上构建
docker build -t system-prompt-optimizer:latest .
# 导出镜像
docker save -o system-prompt-optimizer.tar system-prompt-optimizer:latest
```
#### 步骤 2: 传输并加载
```bash
# 传输到目标服务器
scp system-prompt-optimizer.tar user@server:/path/
# 在目标服务器上加载
docker load -i system-prompt-optimizer.tar
```
#### 步骤 3: 启动服务
```bash
# 使用 Docker Compose
docker-compose up -d
# 或使用 Docker 命令
docker run -d \
--name system-prompt-optimizer \
-p 8010:8010 \
-e OLLAMA_HOST=http://host.docker.internal:11434 \
-v $(pwd)/outputs:/app/outputs \
--add-host host.docker.internal:host-gateway \
--restart unless-stopped \
system-prompt-optimizer:latest
```
## 配置说明
### 环境变量
`docker-compose.yml``docker run` 命令中可以配置以下环境变量:
- `OLLAMA_HOST`: Ollama 服务地址(默认: `http://host.docker.internal:11434`
- `PYTHONUNBUFFERED`: Python 输出缓冲(默认: `1`
### 端口映射
- **8010**: Web 界面和 API 端口
### 数据持久化
- `./outputs`: 用户反馈日志存储目录(映射到容器内 `/app/outputs`
## 故障排查
### 1. 无法连接 Ollama 服务
**问题**: 容器内无法访问宿主机的 Ollama 服务
**解决方案**:
```bash
# 确保使用了 --add-host 参数
--add-host host.docker.internal:host-gateway
# 或者直接使用宿主机 IP
-e OLLAMA_HOST=http://192.168.1.100:11434
```
### 2. 模型不可用All-in-One 部署)
**问题**: 容器内模型未正确加载
**解决方案**:
```bash
# 进入容器检查
docker exec -it system-prompt-optimizer bash
# 在容器内检查模型
ollama list
# 如果模型不存在,检查模型目录
ls -la /root/.ollama/models/
# 退出容器
exit
```
如果模型确实丢失,可能需要重新构建镜像。
### 3. 模型不可用(分离部署)
**问题**: Ollama 模型未安装
**解决方案**:
```bash
# 在宿主机上拉取模型
ollama pull qwen3:14b
ollama pull qwen3-embedding:4b
# 验证模型已安装
ollama list
```
### 4. 容器启动失败
**问题**: 端口被占用或权限问题
**解决方案**:
```bash
# 检查端口占用
netstat -tulpn | grep 8010
netstat -tulpn | grep 11434
# 更换端口All-in-One 需要两个端口)
docker run -p 8011:8010 -p 11435:11434 ...
# 查看容器日志
docker logs system-prompt-optimizer
```
### 5. 性能问题
**问题**: 生成速度慢
**解决方案**:
- 确保 Ollama 使用 GPU 加速
- 使用更小的模型(如 `qwen3:4b`
- 调整 `config.py` 中的 `GENERATION_POOL_SIZE`
## 更新部署
```bash
# 1. 在开发机器上重新构建镜像
docker build -t system-prompt-optimizer:latest .
# 2. 导出新镜像
docker save -o system-prompt-optimizer-new.tar system-prompt-optimizer:latest
# 3. 传输到服务器并加载
docker load -i system-prompt-optimizer-new.tar
# 4. 重启服务
docker-compose down
docker-compose up -d
# 或使用 docker 命令
docker stop system-prompt-optimizer
docker rm system-prompt-optimizer
docker run -d ... # 使用相同的启动命令
```
## 安全建议
1. **网络隔离**: 如果不需要外部访问,只绑定到 localhost
```bash
-p 127.0.0.1:8010:8010
```
2. **防火墙**: 配置防火墙规则限制访问
```bash
# 只允许特定 IP 访问
iptables -A INPUT -p tcp --dport 8010 -s 192.168.1.0/24 -j ACCEPT
iptables -A INPUT -p tcp --dport 8010 -j DROP
```
3. **日志管理**: 定期清理日志文件
```bash
# 限制 Docker 日志大小
docker run --log-opt max-size=10m --log-opt max-file=3 ...
```
## 联系支持
如有问题,请查看:
- 应用日志: `docker logs system-prompt-optimizer`
- Ollama 日志: `journalctl -u ollama -f`
- API 文档: http://localhost:8010/docs