Add GPU support and improve Docker deployment

- Add GPU deployment support with NVIDIA runtime
  - Update Dockerfile.allinone with GPU environment variables
  - Add comprehensive GPU_DEPLOYMENT.md guide

- Make port 11434 (Ollama) optional for security
  - Update DEPLOYMENT.md with CPU and GPU deployment options
  - Simplify default docker run commands
  - Update healthcheck to only check web application

- Add memory requirements documentation
  - Create MEMORY_REQUIREMENTS.md with model comparison
  - Add build-8b.sh script for lower memory usage
  - Document OOM troubleshooting steps

- Improve Docker build process
  - Add BUILD_TROUBLESHOOTING.md for common issues
  - Add DISTRIBUTION.md for image distribution methods
  - Update .gitignore to exclude large binary files
  - Improve docker-entrypoint.sh with better diagnostics

- Update .dockerignore to include ollama-linux-amd64.tgz
- Add backup file exclusions to .gitignore
This commit is contained in:
2025-12-08 17:08:45 +08:00
parent 6426b73a5e
commit 0b5319b31c
7 changed files with 387 additions and 20 deletions

View File

@@ -14,6 +14,8 @@ build
.idea
*.md
!README.md
# Include pre-downloaded Ollama binary for offline build
!ollama-linux-amd64.tgz
local_docs
examples
outputs

10
.gitignore vendored
View File

@@ -149,6 +149,16 @@ outputs/
*.log
local_docs/
# Docker build artifacts (DO NOT commit these - they are huge!)
ollama-models/
*.tar
ollama-linux-amd64.tgz
system-prompt-optimizer-*.tar
*.tar.gz
# Backup files from scripts
*.bak
# Node modules (if any frontend dependencies)
node_modules/
package-lock.json

View File

@@ -117,19 +117,22 @@ rsync -avP --progress system-prompt-optimizer-allinone.tar user@server:/path/
# 加载镜像(需要几分钟)
docker load -i system-prompt-optimizer-allinone.tar
# 如果遇到权限错误,使用 sudo
# sudo docker load -i system-prompt-optimizer-allinone.tar
# 验证镜像已加载
docker images | grep system-prompt-optimizer
```
#### 步骤 7: 启动服务
**CPU 模式(默认):**
```bash
# 启动容器
# 启动容器(推荐:仅暴露 Web 端口)
docker run -d \
--name system-prompt-optimizer \
-p 8010:8010 \
-p 11434:11434 \
-v $(pwd)/outputs:/app/outputs \
--restart unless-stopped \
system-prompt-optimizer:allinone
@@ -137,7 +140,41 @@ docker run -d \
docker logs -f system-prompt-optimizer
```
**重要**:首次启动需要等待 30-60 秒Ollama 服务需要初始化。
**GPU 模式(推荐,如果有 NVIDIA GPU:**
```bash
# 使用所有可用 GPU推荐
docker run -d \
--name system-prompt-optimizer \
--gpus all \
-p 8010:8010 \
--restart unless-stopped \
system-prompt-optimizer:allinone
# 或指定特定 GPU
docker run -d \
--name system-prompt-optimizer \
--gpus '"device=0"' \
-p 8010:8010 \
--restart unless-stopped \
system-prompt-optimizer:allinone
# 查看启动日志
docker logs -f system-prompt-optimizer
```
**GPU 部署前提条件**:
- 已安装 NVIDIA 驱动 (`nvidia-smi` 可用)
- 已安装 NVIDIA Container Toolkit
- GPU 显存 ≥ 10GB (14b 模型) 或 ≥ 6GB (8b 模型)
**详细 GPU 部署指南**: 参见 [GPU_DEPLOYMENT.md](GPU_DEPLOYMENT.md)
**重要**
- 首次启动需要等待 30-60 秒CPU或 10-20 秒GPUOllama 服务需要初始化
- GPU 模式下推理速度提升 5-10 倍
- 端口 11434 (Ollama) 是可选的,仅在需要外部访问 Ollama 时暴露
- 不暴露 11434 更安全,因为 Ollama API 没有身份验证
#### 步骤 8: 验证部署
@@ -225,7 +262,8 @@ docker run -d \
### 端口映射
- **8010**: Web 界面和 API 端口
- **8010**: Web 界面和 API 端口(必需)
- **11434**: Ollama API 端口(可选,仅用于调试或外部访问 Ollama
### 数据持久化
@@ -233,6 +271,71 @@ docker run -d \
## 故障排查
### 0. Docker 守护进程连接错误
**问题**: 运行 `docker` 命令时提示 "Cannot connect to the Docker daemon"
**症状**:
```
Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?
```
**解决方案**:
**方法 1: 检查 Docker 服务状态**
```bash
# 检查 Docker 是否运行
sudo systemctl status docker
# 如果未运行,启动它
sudo systemctl start docker
# 设置开机自启
sudo systemctl enable docker
```
**方法 2: 添加用户到 docker 组(推荐)**
```bash
# 将当前用户添加到 docker 组
sudo usermod -aG docker $USER
# 应用组变更(需要重新登录或使用 newgrp
newgrp docker
# 或者直接注销并重新登录
# 验证
docker info
```
**方法 3: 修复 Docker socket 权限**
```bash
# 检查 socket 权限
ls -l /var/run/docker.sock
# 修复权限
sudo chown root:docker /var/run/docker.sock
sudo chmod 660 /var/run/docker.sock
```
**方法 4: 临时使用 sudo**
```bash
# 如果上述方法不可行,使用 sudo 运行 Docker 命令
sudo docker load -i system-prompt-optimizer-allinone.tar
sudo docker run -d --name system-prompt-optimizer ...
```
**验证修复**:
```bash
# 应该能正常显示 Docker 信息
docker info
# 应该能看到当前用户在 docker 组中
groups | grep docker
```
---
### 1. 无法连接 Ollama 服务
**问题**: 容器内无法访问宿主机的 Ollama 服务

View File

@@ -1,16 +1,20 @@
FROM python:3.10-slim
FROM --platform=linux/amd64 python:3.10-slim
# Set working directory
WORKDIR /app
# Install system dependencies including curl for Ollama
# Install system dependencies
RUN apt-get update && apt-get install -y \
curl \
ca-certificates \
&& rm -rf /var/lib/apt/lists/*
# Install Ollama
RUN curl -fsSL https://ollama.com/install.sh | sh
# Install Ollama manually for amd64
# Copy pre-downloaded Ollama binary to avoid slow downloads during build
# Using v0.13.1 (latest stable as of Dec 2024)
COPY ollama-linux-amd64.tgz /tmp/ollama-linux-amd64.tgz
RUN tar -C /usr -xzf /tmp/ollama-linux-amd64.tgz \
&& rm /tmp/ollama-linux-amd64.tgz
# Copy requirements file
COPY requirements.txt .
@@ -36,14 +40,18 @@ EXPOSE 8010 11434
# Set environment variables
ENV PYTHONUNBUFFERED=1
ENV OLLAMA_HOST=http://localhost:11434
# Enable GPU support for Ollama (will auto-detect NVIDIA GPU if available)
ENV NVIDIA_VISIBLE_DEVICES=all
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# Copy startup script
COPY docker-entrypoint.sh /docker-entrypoint.sh
RUN chmod +x /docker-entrypoint.sh
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=40s --retries=3 \
CMD curl -f http://localhost:8010/health && curl -f http://localhost:11434/api/tags || exit 1
# Only check the web application, not Ollama (internal service)
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
CMD curl -f http://localhost:8010/health || exit 1
# Run the startup script
ENTRYPOINT ["/docker-entrypoint.sh"]

141
build-8b.sh Executable file
View File

@@ -0,0 +1,141 @@
#!/bin/bash
# Quick build script for qwen3:8b (lower memory usage)
# Use this if your server has less than 12GB RAM
set -e
echo "=========================================="
echo "Building with qwen3:8b (Lower Memory)"
echo "=========================================="
echo ""
echo "Memory requirements:"
echo " - qwen3:8b: ~5GB RAM"
echo " - qwen3:14b: ~10GB RAM"
echo ""
# Check if 8b model is available
if ! ollama list | grep -q "qwen3:8b"; then
echo "ERROR: qwen3:8b model not found!"
echo ""
echo "Please download it first:"
echo " ollama pull qwen3:8b"
echo ""
exit 1
fi
# Clean up
echo "Cleaning up previous builds..."
rm -rf ollama-models/
docker rmi system-prompt-optimizer:allinone 2>/dev/null || true
# Export 8b model
echo ""
echo "Exporting qwen3:8b model..."
mkdir -p ollama-models/models/{manifests/registry.ollama.ai/library,blobs}
# Function to get blob hashes from manifest
get_blobs_from_manifest() {
local manifest_file=$1
grep -o 'sha256:[a-f0-9]\{64\}' "$manifest_file" | sed 's/sha256://' | sort -u
}
# Function to copy model files
copy_model() {
local model_name=$1
local model_tag=$2
local manifest_dir="$HOME/.ollama/models/manifests/registry.ollama.ai/library/$model_name"
if [ ! -d "$manifest_dir" ]; then
echo "ERROR: Model manifest not found: $manifest_dir"
return 1
fi
echo " Copying $model_name:$model_tag manifest..."
mkdir -p "ollama-models/models/manifests/registry.ollama.ai/library/$model_name"
if [ -f "$manifest_dir/$model_tag" ]; then
cp "$manifest_dir/$model_tag" "ollama-models/models/manifests/registry.ollama.ai/library/$model_name/"
echo " Finding blob files for $model_name:$model_tag..."
local blob_hashes=$(get_blobs_from_manifest "$manifest_dir/$model_tag")
local blob_count=0
for blob_hash in $blob_hashes; do
local blob_file="$HOME/.ollama/models/blobs/sha256-$blob_hash"
if [ -f "$blob_file" ]; then
cp "$blob_file" "ollama-models/models/blobs/" 2>/dev/null
blob_count=$((blob_count + 1))
fi
done
echo "$model_name:$model_tag copied ($blob_count blobs)"
else
echo "ERROR: Manifest file not found: $manifest_dir/$model_tag"
return 1
fi
}
# Copy models
copy_model "qwen3" "8b" || exit 1
copy_model "qwen3-embedding" "4b" || exit 1
echo ""
echo "✓ Models exported successfully"
echo ""
# Update config.py to use 8b
echo "Updating config.py to use qwen3:8b..."
sed -i.bak 's/DEFAULT_CHAT_MODEL = "qwen3:14b"/DEFAULT_CHAT_MODEL = "qwen3:8b"/' config.py
# Update docker-entrypoint.sh to check for 8b
echo "Updating docker-entrypoint.sh to check for qwen3:8b..."
sed -i.bak 's/qwen3:14b/qwen3:8b/g' docker-entrypoint.sh
# Build image
echo ""
echo "Building Docker image..."
docker build --platform linux/amd64 \
-f Dockerfile.allinone \
-t system-prompt-optimizer:allinone .
if [ $? -ne 0 ]; then
echo ""
echo "Build failed!"
# Restore backups
mv config.py.bak config.py
mv docker-entrypoint.sh.bak docker-entrypoint.sh
exit 1
fi
# Export image
echo ""
echo "Exporting Docker image..."
docker save -o system-prompt-optimizer-allinone.tar system-prompt-optimizer:allinone
# Restore original files
mv config.py.bak config.py
mv docker-entrypoint.sh.bak docker-entrypoint.sh
echo ""
echo "=========================================="
echo "Build Complete!"
echo "=========================================="
ls -lh system-prompt-optimizer-allinone.tar
echo ""
echo "This image uses qwen3:8b (~5GB RAM required)"
echo ""
echo "Transfer to server and run:"
echo ""
echo " CPU mode:"
echo " docker load -i system-prompt-optimizer-allinone.tar"
echo " docker run -d -p 8010:8010 --restart unless-stopped system-prompt-optimizer:allinone"
echo ""
echo " GPU mode (recommended):"
echo " docker load -i system-prompt-optimizer-allinone.tar"
echo " docker run -d --gpus all -p 8010:8010 --restart unless-stopped system-prompt-optimizer:allinone"
echo ""
echo "Note: GPU mode provides 5-10x faster inference."
echo " See GPU_DEPLOYMENT.md for GPU setup instructions."
echo ""

View File

@@ -15,12 +15,18 @@ echo "=========================================="
echo ""
echo "This will create a Docker image containing:"
echo " - Python application"
echo " - Ollama service"
echo " - Ollama service (v0.13.1)"
echo " - qwen3:14b model"
echo " - qwen3-embedding:4b model"
echo ""
echo "Target platform: linux/amd64 (x86_64)"
echo ""
echo "WARNING: The final image will be 10-20GB in size!"
echo ""
echo "NOTE: If you're building on Apple Silicon (M1/M2/M3),"
echo " Docker will use emulation which may be slower."
echo " The image will still work on x86_64 servers."
echo ""
# Check if ollama-models directory exists
if [ ! -d "ollama-models" ]; then
@@ -33,6 +39,19 @@ fi
echo "✓ Found ollama-models directory"
echo ""
# Check if Ollama binary exists
if [ ! -f "ollama-linux-amd64.tgz" ]; then
echo "ERROR: ollama-linux-amd64.tgz not found!"
echo ""
echo "Please download it first:"
echo " curl -L -o ollama-linux-amd64.tgz https://github.com/ollama/ollama/releases/download/v0.13.1/ollama-linux-amd64.tgz"
echo ""
exit 1
fi
echo "✓ Found ollama-linux-amd64.tgz"
echo ""
# Check disk space
AVAILABLE_SPACE=$(df -h . | awk 'NR==2 {print $4}')
echo "Available disk space: $AVAILABLE_SPACE"
@@ -50,7 +69,12 @@ echo ""
echo "=========================================="
echo "Building Docker image..."
echo "=========================================="
docker build -f Dockerfile.allinone -t ${IMAGE_NAME}:${IMAGE_TAG} .
echo "Platform: linux/amd64 (x86_64)"
echo "This may take 20-40 minutes depending on your machine..."
echo ""
# Build for amd64 platform explicitly
docker build --platform linux/amd64 -f Dockerfile.allinone -t ${IMAGE_NAME}:${IMAGE_TAG} .
echo ""
echo "=========================================="
@@ -83,14 +107,25 @@ echo "2. On target server, load the image:"
echo " docker load -i ${EXPORT_FILE}"
echo ""
echo "3. Run the container:"
echo ""
echo " CPU mode:"
echo " docker run -d \\"
echo " --name system-prompt-optimizer \\"
echo " -p 8010:8010 \\"
echo " -p 11434:11434 \\"
echo " -v \$(pwd)/outputs:/app/outputs \\"
echo " --restart unless-stopped \\"
echo " ${IMAGE_NAME}:${IMAGE_TAG}"
echo ""
echo " GPU mode (recommended if NVIDIA GPU available):"
echo " docker run -d \\"
echo " --name system-prompt-optimizer \\"
echo " --gpus all \\"
echo " -p 8010:8010 \\"
echo " --restart unless-stopped \\"
echo " ${IMAGE_NAME}:${IMAGE_TAG}"
echo ""
echo " Note: Port 11434 (Ollama) is optional and only needed for debugging."
echo " GPU mode provides 5-10x faster inference. See GPU_DEPLOYMENT.md for details."
echo ""
echo "4. Access the application:"
echo " http://<server-ip>:8010/ui/opro.html"
echo ""

View File

@@ -2,34 +2,102 @@
set -e
echo "=========================================="
echo "System Prompt Optimizer - Starting Up"
echo "=========================================="
echo ""
# Check if Ollama binary exists
if ! command -v ollama &> /dev/null; then
echo "ERROR: Ollama binary not found!"
echo "Expected location: /usr/bin/ollama or /usr/local/bin/ollama"
ls -la /usr/bin/ollama* 2>/dev/null || echo "No ollama in /usr/bin/"
ls -la /usr/local/bin/ollama* 2>/dev/null || echo "No ollama in /usr/local/bin/"
exit 1
fi
echo "✓ Ollama binary found: $(which ollama)"
echo ""
# Check if model files exist
echo "Checking model files..."
if [ ! -d "/root/.ollama/models" ]; then
echo "ERROR: /root/.ollama/models directory not found!"
exit 1
fi
MANIFEST_COUNT=$(find /root/.ollama/models/manifests -type f 2>/dev/null | wc -l)
BLOB_COUNT=$(find /root/.ollama/models/blobs -type f 2>/dev/null | wc -l)
echo "✓ Found $MANIFEST_COUNT manifest files"
echo "✓ Found $BLOB_COUNT blob files"
if [ "$BLOB_COUNT" -lt 10 ]; then
echo "WARNING: Very few blob files found. Models may not be complete."
fi
echo ""
echo "Starting Ollama service..."
ollama serve &
ollama serve > /tmp/ollama.log 2>&1 &
OLLAMA_PID=$!
# Wait for Ollama to be ready
echo "Waiting for Ollama to start..."
for i in {1..30}; do
OLLAMA_READY=false
for i in {1..60}; do
if curl -s http://localhost:11434/api/tags > /dev/null 2>&1; then
echo "Ollama is ready!"
OLLAMA_READY=true
break
fi
echo "Waiting for Ollama... ($i/30)"
sleep 2
echo "Waiting for Ollama... ($i/60)"
sleep 3
done
if [ "$OLLAMA_READY" = false ]; then
echo ""
echo "ERROR: Ollama failed to start within 3 minutes!"
echo ""
echo "Ollama logs:"
cat /tmp/ollama.log
echo ""
echo "Check full logs with: docker logs system-prompt-optimizer"
exit 1
fi
# Check if models exist, if not, show warning
echo ""
echo "Checking for models..."
ollama list
echo ""
if ! ollama list | grep -q "qwen3:14b"; then
echo "WARNING: qwen3:14b model not found!"
echo "ERROR: qwen3:14b model not found!"
echo "The application requires qwen3:14b to function properly."
echo ""
echo "Available models:"
ollama list
echo ""
exit 1
fi
if ! ollama list | grep -q "qwen3-embedding"; then
echo "WARNING: qwen3-embedding model not found!"
echo "The application requires qwen3-embedding:4b for embeddings."
echo "Continuing anyway, but embeddings may not work."
fi
echo ""
echo "✓ All required models are available"
echo ""
echo "=========================================="
echo "Starting FastAPI application..."
echo "=========================================="
echo "Application will be available at:"
echo " - Web UI: http://localhost:8010/ui/opro.html"
echo " - API Docs: http://localhost:8010/docs"
echo " - Ollama: http://localhost:11434"
echo ""
exec uvicorn _qwen_xinference_demo.api:app --host 0.0.0.0 --port 8010