feat: implement true OPRO with Gemini-style UI
- Add true OPRO system instruction optimization (vs query rewriting) - Implement iterative optimization with performance trajectory - Add new OPRO API endpoints (/opro/create, /opro/generate_and_evaluate, /opro/execute) - Create modern Gemini-style chat UI (frontend/opro.html) - Optimize performance: reduce candidates from 20 to 10 (2x faster) - Add model selector in UI toolbar - Add collapsible sidebar with session management - Add copy button for instructions - Ensure all generated prompts use simplified Chinese - Update README with comprehensive documentation - Add .gitignore for local_docs folder
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@@ -147,6 +147,7 @@ cython_debug/
|
|||||||
outputs/
|
outputs/
|
||||||
*.jsonl
|
*.jsonl
|
||||||
*.log
|
*.log
|
||||||
|
local_docs/
|
||||||
|
|
||||||
# Node modules (if any frontend dependencies)
|
# Node modules (if any frontend dependencies)
|
||||||
node_modules/
|
node_modules/
|
||||||
|
|||||||
217
README.md
217
README.md
@@ -1,3 +1,218 @@
|
|||||||
|
# OPRO Prompt Optimizer
|
||||||
|
|
||||||
|
## 功能概述
|
||||||
|
|
||||||
|
OPRO (Optimization by PROmpting) 是一个基于大语言模型的提示词优化系统。本项目实现了真正的 OPRO 算法,通过迭代优化系统指令(System Instructions)来提升 LLM 在特定任务上的性能。
|
||||||
|
|
||||||
|
### 核心功能
|
||||||
|
|
||||||
|
- **系统指令优化**:使用 LLM 作为优化器,基于历史性能轨迹生成更优的系统指令
|
||||||
|
- **多轮迭代优化**:支持多轮优化,每轮基于前一轮的性能反馈生成新的候选指令
|
||||||
|
- **智能候选选择**:通过语义聚类和多样性选择,从大量候选中筛选出最具代表性的指令
|
||||||
|
- **性能评估**:支持自定义测试用例对系统指令进行自动评估
|
||||||
|
- **会话管理**:支持多个优化任务的并行管理和历史记录
|
||||||
|
|
||||||
|
### 用户界面
|
||||||
|
|
||||||
|
- **现代化聊天界面**:类似 Google Gemini 的简洁设计
|
||||||
|
- **侧边栏会话管理**:可折叠的侧边栏,支持多会话切换
|
||||||
|
- **实时优化反馈**:每轮优化生成 3-5 个候选指令,用户可选择继续优化或执行
|
||||||
|
- **模型选择**:支持在界面中选择不同的 LLM 模型
|
||||||
|
|
||||||
|
## 主要优化改进
|
||||||
|
|
||||||
|
### 1. 真正的 OPRO 实现
|
||||||
|
|
||||||
|
原始代码实现的是查询重写(Query Rewriting),而非真正的 OPRO。我们添加了完整的 OPRO 功能:
|
||||||
|
|
||||||
|
- **系统指令生成**:`generate_system_instruction_candidates()` - 生成多样化的系统指令候选
|
||||||
|
- **性能评估**:`evaluate_system_instruction()` - 基于测试用例评估指令性能
|
||||||
|
- **轨迹优化**:基于历史 (instruction, score) 轨迹生成更优指令
|
||||||
|
- **元提示工程**:专门设计的元提示用于指导 LLM 生成和优化系统指令
|
||||||
|
|
||||||
|
### 2. 性能优化
|
||||||
|
|
||||||
|
- **候选池大小优化**:从 20 个候选减少到 10 个,速度提升约 2 倍
|
||||||
|
- **智能聚类选择**:使用 AgglomerativeClustering 从候选池中选择最具多样性的 Top-K
|
||||||
|
- **嵌入服务回退**:Xinference → Ollama 自动回退机制,确保服务可用性
|
||||||
|
|
||||||
|
### 3. API 架构改进
|
||||||
|
|
||||||
|
- **新增 OPRO 端点**:
|
||||||
|
- `POST /opro/create` - 创建 OPRO 优化任务
|
||||||
|
- `POST /opro/generate_and_evaluate` - 生成并自动评估候选
|
||||||
|
- `POST /opro/execute` - 执行系统指令
|
||||||
|
- `GET /opro/runs` - 获取所有优化任务
|
||||||
|
- `GET /opro/run/{run_id}` - 获取特定任务详情
|
||||||
|
- **会话状态管理**:完整的 OPRO 运行状态跟踪(轨迹、测试用例、迭代次数)
|
||||||
|
- **向后兼容**:保留原有查询重写功能,标记为 `opro-legacy`
|
||||||
|
|
||||||
|
### 4. 前端界面重构
|
||||||
|
|
||||||
|
- **Gemini 风格设计**:简洁的白色/灰色配色,圆角设计,微妙的阴影效果
|
||||||
|
- **可折叠侧边栏**:默认折叠,支持会话列表管理
|
||||||
|
- **多行输入框**:支持多行文本输入,底部工具栏包含模型选择器
|
||||||
|
- **候选指令卡片**:每个候选显示编号、内容、分数,提供"继续优化"、"复制"、"执行"按钮
|
||||||
|
- **简体中文界面**:所有 UI 文本和生成的指令均使用简体中文
|
||||||
|
|
||||||
|
## 快速开始
|
||||||
|
|
||||||
|
### 环境要求
|
||||||
|
|
||||||
|
- **Python** ≥ 3.10(推荐使用 conda 虚拟环境)
|
||||||
|
- **Ollama** 本地服务及模型(如 `qwen3:8b`、`qwen3-embedding:4b`)
|
||||||
|
- **可选**:Xinference embedding 服务
|
||||||
|
|
||||||
|
### 安装依赖
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# 创建 conda 环境(推荐)
|
||||||
|
conda create -n opro python=3.10
|
||||||
|
conda activate opro
|
||||||
|
|
||||||
|
# 安装 Python 依赖
|
||||||
|
pip install fastapi uvicorn requests numpy scikit-learn pydantic
|
||||||
|
```
|
||||||
|
|
||||||
|
### 启动 Ollama 服务
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# 确保 Ollama 已安装并运行
|
||||||
|
ollama serve
|
||||||
|
|
||||||
|
# 拉取所需模型
|
||||||
|
ollama pull qwen3:8b
|
||||||
|
ollama pull qwen3-embedding:4b
|
||||||
|
```
|
||||||
|
|
||||||
|
### 启动应用
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# 启动后端服务
|
||||||
|
uvicorn _qwen_xinference_demo.api:app --host 127.0.0.1 --port 8010
|
||||||
|
|
||||||
|
# 或使用 0.0.0.0 允许外部访问
|
||||||
|
uvicorn _qwen_xinference_demo.api:app --host 0.0.0.0 --port 8010
|
||||||
|
```
|
||||||
|
|
||||||
|
### 访问界面
|
||||||
|
|
||||||
|
- **OPRO 优化界面**:http://127.0.0.1:8010/ui/opro.html
|
||||||
|
- **传统三栏界面**:http://127.0.0.1:8010/ui/
|
||||||
|
- **API 文档**:http://127.0.0.1:8010/docs
|
||||||
|
- **OpenAPI JSON**:http://127.0.0.1:8010/openapi.json
|
||||||
|
|
||||||
|
### 使用示例
|
||||||
|
|
||||||
|
1. **创建新会话**:在 OPRO 界面点击"新建会话"或侧边栏的 + 按钮
|
||||||
|
2. **输入任务描述**:例如"将中文翻译成英文"
|
||||||
|
3. **查看候选指令**:系统生成 3-5 个优化的系统指令
|
||||||
|
4. **继续优化**:点击"继续优化"进行下一轮迭代
|
||||||
|
5. **执行指令**:点击"执行此指令"测试指令效果
|
||||||
|
6. **复制指令**:点击"复制"按钮将指令复制到剪贴板
|
||||||
|
|
||||||
|
## 配置说明
|
||||||
|
|
||||||
|
配置文件:`config.py`
|
||||||
|
|
||||||
|
### 关键配置项
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Ollama 服务配置
|
||||||
|
OLLAMA_HOST = "http://127.0.0.1:11434"
|
||||||
|
DEFAULT_CHAT_MODEL = "qwen3:8b"
|
||||||
|
DEFAULT_EMBED_MODEL = "qwen3-embedding:4b"
|
||||||
|
|
||||||
|
# OPRO 优化参数
|
||||||
|
GENERATION_POOL_SIZE = 10 # 生成候选池大小
|
||||||
|
TOP_K = 5 # 返回给用户的候选数量
|
||||||
|
CLUSTER_DISTANCE_THRESHOLD = 0.15 # 聚类距离阈值
|
||||||
|
|
||||||
|
# Xinference 配置(可选)
|
||||||
|
XINFERENCE_EMBED_URL = "http://127.0.0.1:9997/models/bge-base-zh/embed"
|
||||||
|
```
|
||||||
|
|
||||||
|
## 项目结构
|
||||||
|
|
||||||
|
```
|
||||||
|
.
|
||||||
|
├── _qwen_xinference_demo/
|
||||||
|
│ ├── api.py # FastAPI 主应用
|
||||||
|
│ └── opro/
|
||||||
|
│ ├── user_prompt_optimizer.py # OPRO 核心逻辑
|
||||||
|
│ ├── prompt_utils.py # 元提示生成
|
||||||
|
│ ├── session_state.py # 会话状态管理
|
||||||
|
│ ├── ollama_client.py # Ollama 客户端
|
||||||
|
│ └── xinference_client.py # Xinference 客户端
|
||||||
|
├── frontend/
|
||||||
|
│ ├── opro.html # OPRO 优化界面
|
||||||
|
│ └── index.html # 传统三栏界面
|
||||||
|
├── examples/
|
||||||
|
│ ├── opro_demo.py # OPRO 功能演示
|
||||||
|
│ └── client_demo.py # API 调用示例
|
||||||
|
├── config.py # 全局配置
|
||||||
|
├── API.md # API 文档
|
||||||
|
└── README.md # 本文件
|
||||||
|
```
|
||||||
|
|
||||||
|
## API 端点
|
||||||
|
|
||||||
|
### OPRO 相关(推荐使用)
|
||||||
|
|
||||||
|
- `POST /opro/create` - 创建优化任务
|
||||||
|
- `POST /opro/generate_and_evaluate` - 生成并评估候选
|
||||||
|
- `POST /opro/execute` - 执行系统指令
|
||||||
|
- `GET /opro/runs` - 获取所有任务
|
||||||
|
- `GET /opro/run/{run_id}` - 获取任务详情
|
||||||
|
|
||||||
|
### 传统端点(向后兼容)
|
||||||
|
|
||||||
|
- `POST /query` - 查询重写(首轮)
|
||||||
|
- `POST /select` - 选择候选并回答
|
||||||
|
- `POST /reject` - 拒绝并重新生成
|
||||||
|
- `POST /message` - 聊天消息
|
||||||
|
|
||||||
|
### 通用端点
|
||||||
|
|
||||||
|
- `GET /health` - 健康检查
|
||||||
|
- `GET /version` - 版本信息
|
||||||
|
- `GET /models` - 可用模型列表
|
||||||
|
- `POST /set_model` - 设置模型
|
||||||
|
|
||||||
|
详细 API 文档请访问:http://127.0.0.1:8010/docs
|
||||||
|
|
||||||
|
## 常见问题
|
||||||
|
|
||||||
|
### 1. 无法连接 Ollama 服务
|
||||||
|
|
||||||
|
确保 Ollama 服务正在运行:
|
||||||
|
```bash
|
||||||
|
ollama serve
|
||||||
|
```
|
||||||
|
|
||||||
|
检查配置文件中的 `OLLAMA_HOST` 是否正确。
|
||||||
|
|
||||||
|
### 2. 模型不可用
|
||||||
|
|
||||||
|
通过 `/models` 端点查看可用模型列表,使用 `/set_model` 切换模型。
|
||||||
|
|
||||||
|
### 3. 生成速度慢
|
||||||
|
|
||||||
|
- 调整 `GENERATION_POOL_SIZE` 减少候选数量
|
||||||
|
- 使用更小的模型(如 `qwen3:4b`)
|
||||||
|
- 确保 Ollama 使用 GPU 加速
|
||||||
|
|
||||||
|
### 4. 界面显示异常
|
||||||
|
|
||||||
|
硬刷新浏览器缓存:
|
||||||
|
- **Mac**: `Cmd + Shift + R`
|
||||||
|
- **Windows/Linux**: `Ctrl + Shift + R`
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary><b>原始 README(点击展开)</b></summary>
|
||||||
|
|
||||||
- 项目简介
|
- 项目简介
|
||||||
|
|
||||||
- OPRO Prompt Optimizer:面向提示优化的交互式系统,支持多轮拒选/再生成、语义聚类去重与 Top‑K 代表选择。
|
- OPRO Prompt Optimizer:面向提示优化的交互式系统,支持多轮拒选/再生成、语义聚类去重与 Top‑K 代表选择。
|
||||||
@@ -65,3 +280,5 @@
|
|||||||
- 第二轮无相关候选:使用 POST /query_from_message 基于最近消息再生候选 _qwen_xinference_demo/api.py:193-206
|
- 第二轮无相关候选:使用 POST /query_from_message 基于最近消息再生候选 _qwen_xinference_demo/api.py:193-206
|
||||||
- 立即回答诉求:用 POST /answer 先答后给候选 _qwen_xinference_demo/api.py:211-219
|
- 立即回答诉求:用 POST /answer 先答后给候选 _qwen_xinference_demo/api.py:211-219
|
||||||
- 端口与地址访问差异:在启动命令中明确 --host 0.0.0.0 --port 8010 ,本地浏览器建议访问 127.0.0.1
|
- 端口与地址访问差异:在启动命令中明确 --host 0.0.0.0 --port 8010 ,本地浏览器建议访问 127.0.0.1
|
||||||
|
|
||||||
|
</details>
|
||||||
@@ -2,14 +2,30 @@ from fastapi import FastAPI, HTTPException, Request
|
|||||||
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
||||||
from fastapi.staticfiles import StaticFiles
|
from fastapi.staticfiles import StaticFiles
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
from typing import List, Tuple, Optional
|
||||||
import config
|
import config
|
||||||
|
|
||||||
|
# Legacy session management (query rewriting)
|
||||||
from .opro.session_state import create_session, get_session, update_session_add_candidates, log_user_choice
|
from .opro.session_state import create_session, get_session, update_session_add_candidates, log_user_choice
|
||||||
from .opro.session_state import log_user_reject
|
from .opro.session_state import log_user_reject
|
||||||
from .opro.session_state import set_selected_prompt, log_chat_message
|
from .opro.session_state import set_selected_prompt, log_chat_message
|
||||||
from .opro.session_state import set_session_model
|
from .opro.session_state import set_session_model
|
||||||
from .opro.session_state import USER_FEEDBACK_LOG
|
from .opro.session_state import USER_FEEDBACK_LOG
|
||||||
|
|
||||||
|
# True OPRO session management
|
||||||
|
from .opro.session_state import (
|
||||||
|
create_opro_run, get_opro_run, update_opro_iteration,
|
||||||
|
add_opro_evaluation, get_opro_trajectory, set_opro_test_cases,
|
||||||
|
complete_opro_run, list_opro_runs
|
||||||
|
)
|
||||||
|
|
||||||
|
# Optimization functions
|
||||||
from .opro.user_prompt_optimizer import generate_candidates
|
from .opro.user_prompt_optimizer import generate_candidates
|
||||||
|
from .opro.user_prompt_optimizer import (
|
||||||
|
generate_system_instruction_candidates,
|
||||||
|
evaluate_system_instruction
|
||||||
|
)
|
||||||
|
|
||||||
from .opro.ollama_client import call_qwen
|
from .opro.ollama_client import call_qwen
|
||||||
from .opro.ollama_client import list_models
|
from .opro.ollama_client import list_models
|
||||||
|
|
||||||
@@ -23,8 +39,9 @@ app = FastAPI(
|
|||||||
openapi_tags=[
|
openapi_tags=[
|
||||||
{"name": "health", "description": "健康检查"},
|
{"name": "health", "description": "健康检查"},
|
||||||
{"name": "models", "description": "模型列表与设置"},
|
{"name": "models", "description": "模型列表与设置"},
|
||||||
{"name": "sessions", "description": "会话管理"},
|
{"name": "sessions", "description": "会话管理(旧版查询重写)"},
|
||||||
{"name": "opro", "description": "提示优化候选生成与选择/拒绝"},
|
{"name": "opro-legacy", "description": "旧版提示优化(查询重写)"},
|
||||||
|
{"name": "opro-true", "description": "真正的OPRO(系统指令优化)"},
|
||||||
{"name": "chat", "description": "会话聊天"},
|
{"name": "chat", "description": "会话聊天"},
|
||||||
{"name": "ui", "description": "静态页面"}
|
{"name": "ui", "description": "静态页面"}
|
||||||
]
|
]
|
||||||
@@ -89,14 +106,69 @@ class SetModelReq(BaseModel):
|
|||||||
session_id: str
|
session_id: str
|
||||||
model_name: str
|
model_name: str
|
||||||
|
|
||||||
@app.post("/start", tags=["opro"])
|
|
||||||
|
# ============================================================================
|
||||||
|
# TRUE OPRO REQUEST MODELS
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
class TestCase(BaseModel):
|
||||||
|
"""A single test case for OPRO evaluation."""
|
||||||
|
input: str
|
||||||
|
expected_output: str
|
||||||
|
|
||||||
|
|
||||||
|
class CreateOPRORunReq(BaseModel):
|
||||||
|
"""Request to create a new OPRO optimization run."""
|
||||||
|
task_description: str
|
||||||
|
test_cases: Optional[List[TestCase]] = None
|
||||||
|
model_name: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
class OPROIterateReq(BaseModel):
|
||||||
|
"""Request to run one OPRO iteration."""
|
||||||
|
run_id: str
|
||||||
|
top_k: Optional[int] = None
|
||||||
|
|
||||||
|
|
||||||
|
class OPROEvaluateReq(BaseModel):
|
||||||
|
"""Request to evaluate a system instruction."""
|
||||||
|
run_id: str
|
||||||
|
instruction: str
|
||||||
|
|
||||||
|
|
||||||
|
class OPROAddTestCasesReq(BaseModel):
|
||||||
|
"""Request to add test cases to an OPRO run."""
|
||||||
|
run_id: str
|
||||||
|
test_cases: List[TestCase]
|
||||||
|
|
||||||
|
|
||||||
|
class OPROGenerateAndEvaluateReq(BaseModel):
|
||||||
|
"""Request to generate and auto-evaluate candidates (for chat-like UX)."""
|
||||||
|
run_id: str
|
||||||
|
top_k: Optional[int] = None
|
||||||
|
pool_size: Optional[int] = None
|
||||||
|
auto_evaluate: Optional[bool] = True # If False, use diversity-based selection only
|
||||||
|
|
||||||
|
|
||||||
|
class OPROExecuteReq(BaseModel):
|
||||||
|
"""Request to execute a system instruction with user input."""
|
||||||
|
instruction: str
|
||||||
|
user_input: str
|
||||||
|
model_name: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# LEGACY ENDPOINTS (Query Rewriting - NOT true OPRO)
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
@app.post("/start", tags=["opro-legacy"])
|
||||||
def start(req: StartReq):
|
def start(req: StartReq):
|
||||||
sid = create_session(req.query)
|
sid = create_session(req.query)
|
||||||
cands = generate_candidates(req.query, [], model_name=get_session(sid).get("model_name"))
|
cands = generate_candidates(req.query, [], model_name=get_session(sid).get("model_name"))
|
||||||
update_session_add_candidates(sid, cands)
|
update_session_add_candidates(sid, cands)
|
||||||
return ok({"session_id": sid, "round": 0, "candidates": cands})
|
return ok({"session_id": sid, "round": 0, "candidates": cands})
|
||||||
|
|
||||||
@app.post("/next", tags=["opro"])
|
@app.post("/next", tags=["opro-legacy"])
|
||||||
def next_round(req: NextReq):
|
def next_round(req: NextReq):
|
||||||
s = get_session(req.session_id)
|
s = get_session(req.session_id)
|
||||||
if not s:
|
if not s:
|
||||||
@@ -110,7 +182,7 @@ def next_round(req: NextReq):
|
|||||||
update_session_add_candidates(req.session_id, cands)
|
update_session_add_candidates(req.session_id, cands)
|
||||||
return ok({"session_id": req.session_id, "round": s["round"], "candidates": cands})
|
return ok({"session_id": req.session_id, "round": s["round"], "candidates": cands})
|
||||||
|
|
||||||
@app.post("/select", tags=["opro"])
|
@app.post("/select", tags=["opro-legacy"])
|
||||||
def select(req: SelectReq):
|
def select(req: SelectReq):
|
||||||
s = get_session(req.session_id)
|
s = get_session(req.session_id)
|
||||||
if not s:
|
if not s:
|
||||||
@@ -138,7 +210,7 @@ def select(req: SelectReq):
|
|||||||
pass
|
pass
|
||||||
return ok({"prompt": req.choice, "answer": ans})
|
return ok({"prompt": req.choice, "answer": ans})
|
||||||
|
|
||||||
@app.post("/reject", tags=["opro"])
|
@app.post("/reject", tags=["opro-legacy"])
|
||||||
def reject(req: RejectReq):
|
def reject(req: RejectReq):
|
||||||
s = get_session(req.session_id)
|
s = get_session(req.session_id)
|
||||||
if not s:
|
if not s:
|
||||||
@@ -151,7 +223,7 @@ class QueryReq(BaseModel):
|
|||||||
query: str
|
query: str
|
||||||
session_id: str | None = None
|
session_id: str | None = None
|
||||||
|
|
||||||
@app.post("/query", tags=["opro"])
|
@app.post("/query", tags=["opro-legacy"])
|
||||||
def query(req: QueryReq):
|
def query(req: QueryReq):
|
||||||
if req.session_id:
|
if req.session_id:
|
||||||
s = get_session(req.session_id)
|
s = get_session(req.session_id)
|
||||||
@@ -240,7 +312,7 @@ def message(req: MessageReq):
|
|||||||
class QueryFromMsgReq(BaseModel):
|
class QueryFromMsgReq(BaseModel):
|
||||||
session_id: str
|
session_id: str
|
||||||
|
|
||||||
@app.post("/query_from_message", tags=["opro"])
|
@app.post("/query_from_message", tags=["opro-legacy"])
|
||||||
def query_from_message(req: QueryFromMsgReq):
|
def query_from_message(req: QueryFromMsgReq):
|
||||||
s = get_session(req.session_id)
|
s = get_session(req.session_id)
|
||||||
if not s:
|
if not s:
|
||||||
@@ -258,7 +330,7 @@ def query_from_message(req: QueryFromMsgReq):
|
|||||||
class AnswerReq(BaseModel):
|
class AnswerReq(BaseModel):
|
||||||
query: str
|
query: str
|
||||||
|
|
||||||
@app.post("/answer", tags=["opro"])
|
@app.post("/answer", tags=["opro-legacy"])
|
||||||
def answer(req: AnswerReq):
|
def answer(req: AnswerReq):
|
||||||
sid = create_session(req.query)
|
sid = create_session(req.query)
|
||||||
log_chat_message(sid, "user", req.query)
|
log_chat_message(sid, "user", req.query)
|
||||||
@@ -282,3 +354,287 @@ def set_model(req: SetModelReq):
|
|||||||
raise AppException(400, f"model not available: {req.model_name}", "MODEL_NOT_AVAILABLE")
|
raise AppException(400, f"model not available: {req.model_name}", "MODEL_NOT_AVAILABLE")
|
||||||
set_session_model(req.session_id, req.model_name)
|
set_session_model(req.session_id, req.model_name)
|
||||||
return ok({"session_id": req.session_id, "model_name": req.model_name})
|
return ok({"session_id": req.session_id, "model_name": req.model_name})
|
||||||
|
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# TRUE OPRO ENDPOINTS (System Instruction Optimization)
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
@app.post("/opro/create", tags=["opro-true"])
|
||||||
|
def opro_create_run(req: CreateOPRORunReq):
|
||||||
|
"""
|
||||||
|
Create a new OPRO optimization run.
|
||||||
|
|
||||||
|
This starts a new system instruction optimization process for a given task.
|
||||||
|
"""
|
||||||
|
# Convert test cases from Pydantic models to tuples
|
||||||
|
test_cases = None
|
||||||
|
if req.test_cases:
|
||||||
|
test_cases = [(tc.input, tc.expected_output) for tc in req.test_cases]
|
||||||
|
|
||||||
|
run_id = create_opro_run(
|
||||||
|
task_description=req.task_description,
|
||||||
|
test_cases=test_cases,
|
||||||
|
model_name=req.model_name
|
||||||
|
)
|
||||||
|
|
||||||
|
run = get_opro_run(run_id)
|
||||||
|
|
||||||
|
return ok({
|
||||||
|
"run_id": run_id,
|
||||||
|
"task_description": run["task_description"],
|
||||||
|
"num_test_cases": len(run["test_cases"]),
|
||||||
|
"iteration": run["iteration"],
|
||||||
|
"status": run["status"]
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/opro/iterate", tags=["opro-true"])
|
||||||
|
def opro_iterate(req: OPROIterateReq):
|
||||||
|
"""
|
||||||
|
Run one OPRO iteration: generate new system instruction candidates.
|
||||||
|
|
||||||
|
This generates optimized system instructions based on the performance trajectory.
|
||||||
|
"""
|
||||||
|
run = get_opro_run(req.run_id)
|
||||||
|
if not run:
|
||||||
|
raise AppException(404, "OPRO run not found", "RUN_NOT_FOUND")
|
||||||
|
|
||||||
|
# Get trajectory for optimization
|
||||||
|
trajectory = get_opro_trajectory(req.run_id)
|
||||||
|
|
||||||
|
# Generate candidates
|
||||||
|
top_k = req.top_k or config.TOP_K
|
||||||
|
try:
|
||||||
|
candidates = generate_system_instruction_candidates(
|
||||||
|
task_description=run["task_description"],
|
||||||
|
trajectory=trajectory if trajectory else None,
|
||||||
|
top_k=top_k,
|
||||||
|
model_name=run["model_name"]
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise AppException(500, f"Failed to generate candidates: {e}", "GENERATION_ERROR")
|
||||||
|
|
||||||
|
# Update run with new candidates
|
||||||
|
update_opro_iteration(req.run_id, candidates)
|
||||||
|
|
||||||
|
return ok({
|
||||||
|
"run_id": req.run_id,
|
||||||
|
"iteration": run["iteration"] + 1,
|
||||||
|
"candidates": candidates,
|
||||||
|
"num_candidates": len(candidates),
|
||||||
|
"best_score": run["best_score"]
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/opro/evaluate", tags=["opro-true"])
|
||||||
|
def opro_evaluate(req: OPROEvaluateReq):
|
||||||
|
"""
|
||||||
|
Evaluate a system instruction on the test cases.
|
||||||
|
|
||||||
|
This scores the instruction and updates the performance trajectory.
|
||||||
|
"""
|
||||||
|
run = get_opro_run(req.run_id)
|
||||||
|
if not run:
|
||||||
|
raise AppException(404, "OPRO run not found", "RUN_NOT_FOUND")
|
||||||
|
|
||||||
|
if not run["test_cases"]:
|
||||||
|
raise AppException(400, "No test cases defined for this run", "NO_TEST_CASES")
|
||||||
|
|
||||||
|
# Evaluate the instruction
|
||||||
|
try:
|
||||||
|
score = evaluate_system_instruction(
|
||||||
|
system_instruction=req.instruction,
|
||||||
|
test_cases=run["test_cases"],
|
||||||
|
model_name=run["model_name"]
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise AppException(500, f"Evaluation failed: {e}", "EVALUATION_ERROR")
|
||||||
|
|
||||||
|
# Add to trajectory
|
||||||
|
add_opro_evaluation(req.run_id, req.instruction, score)
|
||||||
|
|
||||||
|
# Get updated run info
|
||||||
|
run = get_opro_run(req.run_id)
|
||||||
|
|
||||||
|
return ok({
|
||||||
|
"run_id": req.run_id,
|
||||||
|
"instruction": req.instruction,
|
||||||
|
"score": score,
|
||||||
|
"best_score": run["best_score"],
|
||||||
|
"is_new_best": score == run["best_score"] and score > 0
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/opro/runs", tags=["opro-true"])
|
||||||
|
def opro_list_runs():
|
||||||
|
"""
|
||||||
|
List all OPRO optimization runs.
|
||||||
|
"""
|
||||||
|
runs = list_opro_runs()
|
||||||
|
return ok({"runs": runs, "total": len(runs)})
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/opro/run/{run_id}", tags=["opro-true"])
|
||||||
|
def opro_get_run(run_id: str):
|
||||||
|
"""
|
||||||
|
Get detailed information about an OPRO run.
|
||||||
|
"""
|
||||||
|
run = get_opro_run(run_id)
|
||||||
|
if not run:
|
||||||
|
raise AppException(404, "OPRO run not found", "RUN_NOT_FOUND")
|
||||||
|
|
||||||
|
# Get sorted trajectory
|
||||||
|
trajectory = get_opro_trajectory(run_id)
|
||||||
|
|
||||||
|
return ok({
|
||||||
|
"run_id": run_id,
|
||||||
|
"task_description": run["task_description"],
|
||||||
|
"iteration": run["iteration"],
|
||||||
|
"status": run["status"],
|
||||||
|
"best_score": run["best_score"],
|
||||||
|
"best_instruction": run["best_instruction"],
|
||||||
|
"num_test_cases": len(run["test_cases"]),
|
||||||
|
"test_cases": [{"input": tc[0], "expected_output": tc[1]} for tc in run["test_cases"]],
|
||||||
|
"trajectory": [{"instruction": inst, "score": score} for inst, score in trajectory[:10]], # Top 10
|
||||||
|
"current_candidates": run["current_candidates"]
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/opro/test_cases", tags=["opro-true"])
|
||||||
|
def opro_add_test_cases(req: OPROAddTestCasesReq):
|
||||||
|
"""
|
||||||
|
Add or update test cases for an OPRO run.
|
||||||
|
"""
|
||||||
|
run = get_opro_run(req.run_id)
|
||||||
|
if not run:
|
||||||
|
raise AppException(404, "OPRO run not found", "RUN_NOT_FOUND")
|
||||||
|
|
||||||
|
# Convert test cases
|
||||||
|
test_cases = [(tc.input, tc.expected_output) for tc in req.test_cases]
|
||||||
|
|
||||||
|
# Update test cases
|
||||||
|
set_opro_test_cases(req.run_id, test_cases)
|
||||||
|
|
||||||
|
return ok({
|
||||||
|
"run_id": req.run_id,
|
||||||
|
"num_test_cases": len(test_cases),
|
||||||
|
"test_cases": [{"input": tc[0], "expected_output": tc[1]} for tc in test_cases]
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/opro/generate_and_evaluate", tags=["opro-true"])
|
||||||
|
def opro_generate_and_evaluate(req: OPROGenerateAndEvaluateReq):
|
||||||
|
"""
|
||||||
|
Generate candidates and auto-evaluate them (for chat-like UX).
|
||||||
|
|
||||||
|
This is the main endpoint for the chat interface. It:
|
||||||
|
1. Generates candidates based on trajectory
|
||||||
|
2. Auto-evaluates them (if test cases exist and auto_evaluate=True)
|
||||||
|
3. Returns top-k sorted by score (or diversity if no evaluation)
|
||||||
|
"""
|
||||||
|
run = get_opro_run(req.run_id)
|
||||||
|
if not run:
|
||||||
|
raise AppException(404, "OPRO run not found", "RUN_NOT_FOUND")
|
||||||
|
|
||||||
|
top_k = req.top_k or config.TOP_K
|
||||||
|
pool_size = req.pool_size or config.GENERATION_POOL_SIZE
|
||||||
|
|
||||||
|
# Get trajectory for optimization
|
||||||
|
trajectory = get_opro_trajectory(req.run_id)
|
||||||
|
|
||||||
|
# Generate candidates
|
||||||
|
try:
|
||||||
|
candidates = generate_system_instruction_candidates(
|
||||||
|
task_description=run["task_description"],
|
||||||
|
trajectory=trajectory if trajectory else None,
|
||||||
|
top_k=pool_size, # Generate pool_size candidates first
|
||||||
|
pool_size=pool_size,
|
||||||
|
model_name=run["model_name"]
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
raise AppException(500, f"Failed to generate candidates: {e}", "GENERATION_ERROR")
|
||||||
|
|
||||||
|
# Decide whether to evaluate
|
||||||
|
should_evaluate = req.auto_evaluate and len(run["test_cases"]) > 0
|
||||||
|
|
||||||
|
if should_evaluate:
|
||||||
|
# Auto-evaluate all candidates
|
||||||
|
scored_candidates = []
|
||||||
|
for candidate in candidates:
|
||||||
|
try:
|
||||||
|
score = evaluate_system_instruction(
|
||||||
|
system_instruction=candidate,
|
||||||
|
test_cases=run["test_cases"],
|
||||||
|
model_name=run["model_name"]
|
||||||
|
)
|
||||||
|
scored_candidates.append({"instruction": candidate, "score": score})
|
||||||
|
|
||||||
|
# Add to trajectory
|
||||||
|
add_opro_evaluation(req.run_id, candidate, score)
|
||||||
|
except Exception as e:
|
||||||
|
# If evaluation fails, assign score 0
|
||||||
|
scored_candidates.append({"instruction": candidate, "score": 0.0})
|
||||||
|
|
||||||
|
# Sort by score (highest first)
|
||||||
|
scored_candidates.sort(key=lambda x: x["score"], reverse=True)
|
||||||
|
|
||||||
|
# Return top-k
|
||||||
|
top_candidates = scored_candidates[:top_k]
|
||||||
|
|
||||||
|
# Update iteration
|
||||||
|
update_opro_iteration(req.run_id, [c["instruction"] for c in top_candidates])
|
||||||
|
|
||||||
|
return ok({
|
||||||
|
"run_id": req.run_id,
|
||||||
|
"candidates": top_candidates,
|
||||||
|
"iteration": run["iteration"] + 1,
|
||||||
|
"evaluated": True,
|
||||||
|
"best_score": run["best_score"]
|
||||||
|
})
|
||||||
|
else:
|
||||||
|
# No evaluation - use diversity-based selection (already done by clustering)
|
||||||
|
# Just return the candidates without scores
|
||||||
|
top_candidates = [
|
||||||
|
{"instruction": candidate, "score": None}
|
||||||
|
for candidate in candidates[:top_k]
|
||||||
|
]
|
||||||
|
|
||||||
|
# Update iteration
|
||||||
|
update_opro_iteration(req.run_id, [c["instruction"] for c in top_candidates])
|
||||||
|
|
||||||
|
return ok({
|
||||||
|
"run_id": req.run_id,
|
||||||
|
"candidates": top_candidates,
|
||||||
|
"iteration": run["iteration"] + 1,
|
||||||
|
"evaluated": False,
|
||||||
|
"best_score": run["best_score"]
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/opro/execute", tags=["opro-true"])
|
||||||
|
def opro_execute(req: OPROExecuteReq):
|
||||||
|
"""
|
||||||
|
Execute a system instruction with user input.
|
||||||
|
|
||||||
|
This uses the selected instruction as a system prompt and calls the LLM.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Construct full prompt with system instruction
|
||||||
|
full_prompt = f"{req.instruction}\n\n{req.user_input}"
|
||||||
|
|
||||||
|
# Call LLM
|
||||||
|
response = call_qwen(
|
||||||
|
full_prompt,
|
||||||
|
temperature=0.2,
|
||||||
|
max_tokens=1024,
|
||||||
|
model_name=req.model_name
|
||||||
|
)
|
||||||
|
|
||||||
|
return ok({
|
||||||
|
"instruction": req.instruction,
|
||||||
|
"user_input": req.user_input,
|
||||||
|
"response": response
|
||||||
|
})
|
||||||
|
except Exception as e:
|
||||||
|
raise AppException(500, f"Execution failed: {e}", "EXECUTION_ERROR")
|
||||||
|
|||||||
@@ -1,4 +1,14 @@
|
|||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# OLD FUNCTIONS (Query Rewriting - NOT true OPRO, kept for compatibility)
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
def refine_instruction(query: str) -> str:
|
def refine_instruction(query: str) -> str:
|
||||||
|
"""
|
||||||
|
LEGACY: Generates query rewrites (NOT true OPRO).
|
||||||
|
This is query expansion, not system instruction optimization.
|
||||||
|
"""
|
||||||
return f"""
|
return f"""
|
||||||
你是一个“问题澄清与重写助手”。
|
你是一个“问题澄清与重写助手”。
|
||||||
请根据用户的原始问题:
|
请根据用户的原始问题:
|
||||||
@@ -7,6 +17,9 @@ def refine_instruction(query: str) -> str:
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def refine_instruction_with_history(query: str, rejected_list: list) -> str:
|
def refine_instruction_with_history(query: str, rejected_list: list) -> str:
|
||||||
|
"""
|
||||||
|
LEGACY: Generates query rewrites with rejection history (NOT true OPRO).
|
||||||
|
"""
|
||||||
rejected_text = "\n".join(f"- {r}" for r in rejected_list) if rejected_list else ""
|
rejected_text = "\n".join(f"- {r}" for r in rejected_list) if rejected_list else ""
|
||||||
return f"""
|
return f"""
|
||||||
你是一个“问题澄清与重写助手”。
|
你是一个“问题澄清与重写助手”。
|
||||||
@@ -18,3 +31,100 @@ def refine_instruction_with_history(query: str, rejected_list: list) -> str:
|
|||||||
|
|
||||||
请从新的角度重新生成至少20条不同的改写问题,每条单独一行。
|
请从新的角度重新生成至少20条不同的改写问题,每条单独一行。
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# TRUE OPRO FUNCTIONS (System Instruction Optimization)
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
def generate_initial_system_instruction_candidates(task_description: str, pool_size: int = None) -> str:
|
||||||
|
"""
|
||||||
|
TRUE OPRO: Generates initial candidate System Instructions for a new OPRO run.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_description: Description of the task the LLM should perform
|
||||||
|
pool_size: Number of candidates to generate (defaults to config.GENERATION_POOL_SIZE)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Meta-prompt that instructs the optimizer LLM to generate system instruction candidates
|
||||||
|
"""
|
||||||
|
import config
|
||||||
|
pool_size = pool_size or config.GENERATION_POOL_SIZE
|
||||||
|
|
||||||
|
return f"""
|
||||||
|
你是一个"系统指令生成助手"。
|
||||||
|
目标任务描述:
|
||||||
|
【{task_description}】
|
||||||
|
|
||||||
|
请根据以上任务,生成 {pool_size} 条高质量、风格各异的"System Instruction"候选指令。
|
||||||
|
|
||||||
|
要求:
|
||||||
|
1. 每条指令必须有明显不同的风格和侧重点
|
||||||
|
2. 覆盖不同的实现策略(例如:简洁型、详细型、示例型、角色扮演型、步骤型等)
|
||||||
|
3. 这些指令应指导LLM的行为和输出格式,以最大化任务性能
|
||||||
|
4. 每条指令单独成行,不包含编号或额外说明
|
||||||
|
5. 所有生成的指令必须使用简体中文
|
||||||
|
|
||||||
|
生成 {pool_size} 条指令:
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def generate_optimized_system_instruction(
|
||||||
|
task_description: str,
|
||||||
|
trajectory: List[Tuple[str, float]],
|
||||||
|
pool_size: int = None
|
||||||
|
) -> str:
|
||||||
|
"""
|
||||||
|
TRUE OPRO: Analyzes performance trajectory and generates optimized System Instructions.
|
||||||
|
|
||||||
|
This is the core OPRO function that uses an LLM as an optimizer to improve
|
||||||
|
system instructions based on historical performance scores.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_description: Description of the task the LLM should perform
|
||||||
|
trajectory: List of (instruction, score) tuples, sorted by score (highest first)
|
||||||
|
pool_size: Number of candidates to generate (defaults to config.GENERATION_POOL_SIZE)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Meta-prompt that instructs the optimizer LLM to generate better system instructions
|
||||||
|
"""
|
||||||
|
import config
|
||||||
|
pool_size = pool_size or config.GENERATION_POOL_SIZE
|
||||||
|
|
||||||
|
if not trajectory:
|
||||||
|
# If no trajectory, fall back to initial generation
|
||||||
|
return generate_initial_system_instruction_candidates(task_description, pool_size)
|
||||||
|
|
||||||
|
# Format the trajectory for the Optimizer LLM
|
||||||
|
formatted_history = "\n".join(
|
||||||
|
f"--- Instruction Score: {score:.4f}\n{instruction}"
|
||||||
|
for instruction, score in trajectory
|
||||||
|
)
|
||||||
|
|
||||||
|
# Determine the current highest score to set the optimization goal
|
||||||
|
highest_score = max(score for _, score in trajectory)
|
||||||
|
|
||||||
|
# Construct the Meta-Prompt (The OPRO Instruction)
|
||||||
|
return f"""
|
||||||
|
你是一个"System Prompt 优化器"。
|
||||||
|
你的任务是改进一个LLM的系统指令,以最大化其在以下任务中的性能:
|
||||||
|
【{task_description}】
|
||||||
|
|
||||||
|
---
|
||||||
|
**历史性能轨迹 (Instructions and Scores):**
|
||||||
|
{formatted_history}
|
||||||
|
---
|
||||||
|
**当前最高得分: {highest_score:.4f}**
|
||||||
|
|
||||||
|
请分析得分最高的指令的特点和得分最低指令的缺陷。
|
||||||
|
然后,生成 {pool_size} 条新的、有潜力超越 {highest_score:.4f} 分的System Instruction。
|
||||||
|
|
||||||
|
要求:
|
||||||
|
1. 每条指令必须有明显不同的改进策略
|
||||||
|
2. 结合高分指令的优点,避免低分指令的缺陷
|
||||||
|
3. 探索新的优化方向和表达方式
|
||||||
|
4. 每条指令单独成行,不包含编号或额外说明
|
||||||
|
5. 所有生成的指令必须使用简体中文
|
||||||
|
|
||||||
|
生成 {pool_size} 条优化后的指令:
|
||||||
|
"""
|
||||||
|
|||||||
@@ -1,8 +1,14 @@
|
|||||||
import uuid
|
import uuid
|
||||||
|
from typing import List, Tuple, Dict, Any
|
||||||
|
|
||||||
|
# Legacy session storage (for query rewriting)
|
||||||
SESSIONS = {}
|
SESSIONS = {}
|
||||||
USER_FEEDBACK_LOG = []
|
USER_FEEDBACK_LOG = []
|
||||||
|
|
||||||
|
# OPRO session storage (for system instruction optimization)
|
||||||
|
OPRO_RUNS = {}
|
||||||
|
OPRO_RUN_LOG = []
|
||||||
|
|
||||||
def create_session(query: str) -> str:
|
def create_session(query: str) -> str:
|
||||||
sid = uuid.uuid4().hex
|
sid = uuid.uuid4().hex
|
||||||
SESSIONS[sid] = {
|
SESSIONS[sid] = {
|
||||||
@@ -54,3 +60,167 @@ def set_session_model(sid: str, model_name: str | None):
|
|||||||
s = SESSIONS.get(sid)
|
s = SESSIONS.get(sid)
|
||||||
if s is not None:
|
if s is not None:
|
||||||
s["model_name"] = model_name
|
s["model_name"] = model_name
|
||||||
|
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# TRUE OPRO SESSION MANAGEMENT
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
def create_opro_run(
|
||||||
|
task_description: str,
|
||||||
|
test_cases: List[Tuple[str, str]] = None,
|
||||||
|
model_name: str = None
|
||||||
|
) -> str:
|
||||||
|
"""
|
||||||
|
Create a new OPRO optimization run.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_description: Description of the task to optimize for
|
||||||
|
test_cases: List of (input, expected_output) tuples for evaluation
|
||||||
|
model_name: Optional model name to use
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
run_id: Unique identifier for this OPRO run
|
||||||
|
"""
|
||||||
|
run_id = uuid.uuid4().hex
|
||||||
|
OPRO_RUNS[run_id] = {
|
||||||
|
"task_description": task_description,
|
||||||
|
"test_cases": test_cases or [],
|
||||||
|
"model_name": model_name,
|
||||||
|
"iteration": 0,
|
||||||
|
"trajectory": [], # List of (instruction, score) tuples
|
||||||
|
"best_instruction": None,
|
||||||
|
"best_score": 0.0,
|
||||||
|
"current_candidates": [],
|
||||||
|
"created_at": uuid.uuid1().time,
|
||||||
|
"status": "active" # active, completed, failed
|
||||||
|
}
|
||||||
|
return run_id
|
||||||
|
|
||||||
|
|
||||||
|
def get_opro_run(run_id: str) -> Dict[str, Any]:
|
||||||
|
"""Get OPRO run by ID."""
|
||||||
|
return OPRO_RUNS.get(run_id)
|
||||||
|
|
||||||
|
|
||||||
|
def update_opro_iteration(
|
||||||
|
run_id: str,
|
||||||
|
candidates: List[str],
|
||||||
|
scores: List[float] = None
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Update OPRO run with new iteration results.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
run_id: OPRO run identifier
|
||||||
|
candidates: List of system instruction candidates
|
||||||
|
scores: Optional list of scores (if evaluated)
|
||||||
|
"""
|
||||||
|
run = OPRO_RUNS.get(run_id)
|
||||||
|
if not run:
|
||||||
|
return
|
||||||
|
|
||||||
|
run["iteration"] += 1
|
||||||
|
run["current_candidates"] = candidates
|
||||||
|
|
||||||
|
# If scores provided, update trajectory
|
||||||
|
if scores and len(scores) == len(candidates):
|
||||||
|
for candidate, score in zip(candidates, scores):
|
||||||
|
run["trajectory"].append((candidate, score))
|
||||||
|
|
||||||
|
# Update best if this is better
|
||||||
|
if score > run["best_score"]:
|
||||||
|
run["best_score"] = score
|
||||||
|
run["best_instruction"] = candidate
|
||||||
|
|
||||||
|
# Log the iteration
|
||||||
|
OPRO_RUN_LOG.append({
|
||||||
|
"run_id": run_id,
|
||||||
|
"iteration": run["iteration"],
|
||||||
|
"num_candidates": len(candidates),
|
||||||
|
"best_score": run["best_score"]
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
def add_opro_evaluation(
|
||||||
|
run_id: str,
|
||||||
|
instruction: str,
|
||||||
|
score: float
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Add a single evaluation result to OPRO run.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
run_id: OPRO run identifier
|
||||||
|
instruction: System instruction that was evaluated
|
||||||
|
score: Performance score
|
||||||
|
"""
|
||||||
|
run = OPRO_RUNS.get(run_id)
|
||||||
|
if not run:
|
||||||
|
return
|
||||||
|
|
||||||
|
# Add to trajectory
|
||||||
|
run["trajectory"].append((instruction, score))
|
||||||
|
|
||||||
|
# Update best if this is better
|
||||||
|
if score > run["best_score"]:
|
||||||
|
run["best_score"] = score
|
||||||
|
run["best_instruction"] = instruction
|
||||||
|
|
||||||
|
|
||||||
|
def get_opro_trajectory(run_id: str) -> List[Tuple[str, float]]:
|
||||||
|
"""
|
||||||
|
Get the performance trajectory for an OPRO run.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of (instruction, score) tuples sorted by score (highest first)
|
||||||
|
"""
|
||||||
|
run = OPRO_RUNS.get(run_id)
|
||||||
|
if not run:
|
||||||
|
return []
|
||||||
|
|
||||||
|
trajectory = run["trajectory"]
|
||||||
|
return sorted(trajectory, key=lambda x: x[1], reverse=True)
|
||||||
|
|
||||||
|
|
||||||
|
def set_opro_test_cases(
|
||||||
|
run_id: str,
|
||||||
|
test_cases: List[Tuple[str, str]]
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Set or update test cases for an OPRO run.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
run_id: OPRO run identifier
|
||||||
|
test_cases: List of (input, expected_output) tuples
|
||||||
|
"""
|
||||||
|
run = OPRO_RUNS.get(run_id)
|
||||||
|
if run:
|
||||||
|
run["test_cases"] = test_cases
|
||||||
|
|
||||||
|
|
||||||
|
def complete_opro_run(run_id: str):
|
||||||
|
"""Mark an OPRO run as completed."""
|
||||||
|
run = OPRO_RUNS.get(run_id)
|
||||||
|
if run:
|
||||||
|
run["status"] = "completed"
|
||||||
|
|
||||||
|
|
||||||
|
def list_opro_runs() -> List[Dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
List all OPRO runs with summary information.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of run summaries
|
||||||
|
"""
|
||||||
|
return [
|
||||||
|
{
|
||||||
|
"run_id": run_id,
|
||||||
|
"task_description": run["task_description"][:100] + "..." if len(run["task_description"]) > 100 else run["task_description"],
|
||||||
|
"iteration": run["iteration"],
|
||||||
|
"best_score": run["best_score"],
|
||||||
|
"num_test_cases": len(run["test_cases"]),
|
||||||
|
"status": run["status"]
|
||||||
|
}
|
||||||
|
for run_id, run in OPRO_RUNS.items()
|
||||||
|
]
|
||||||
|
|||||||
@@ -1,12 +1,18 @@
|
|||||||
import re
|
import re
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from typing import List, Tuple
|
||||||
from sklearn.cluster import AgglomerativeClustering
|
from sklearn.cluster import AgglomerativeClustering
|
||||||
from sklearn.metrics.pairwise import cosine_similarity
|
from sklearn.metrics.pairwise import cosine_similarity
|
||||||
import config
|
import config
|
||||||
|
|
||||||
from .ollama_client import call_qwen
|
from .ollama_client import call_qwen
|
||||||
from .xinference_client import embed_texts
|
from .xinference_client import embed_texts
|
||||||
from .prompt_utils import refine_instruction, refine_instruction_with_history
|
from .prompt_utils import (
|
||||||
|
refine_instruction,
|
||||||
|
refine_instruction_with_history,
|
||||||
|
generate_initial_system_instruction_candidates,
|
||||||
|
generate_optimized_system_instruction
|
||||||
|
)
|
||||||
|
|
||||||
def parse_candidates(raw: str) -> list:
|
def parse_candidates(raw: str) -> list:
|
||||||
lines = [l.strip() for l in re.split(r'\r?\n', raw) if l.strip()]
|
lines = [l.strip() for l in re.split(r'\r?\n', raw) if l.strip()]
|
||||||
@@ -44,6 +50,10 @@ def cluster_and_select(candidates: list, top_k=config.TOP_K, distance_threshold=
|
|||||||
return selected[:top_k]
|
return selected[:top_k]
|
||||||
|
|
||||||
def generate_candidates(query: str, rejected=None, top_k=config.TOP_K, model_name=None):
|
def generate_candidates(query: str, rejected=None, top_k=config.TOP_K, model_name=None):
|
||||||
|
"""
|
||||||
|
LEGACY: Query rewriting function (NOT true OPRO).
|
||||||
|
Kept for backward compatibility with existing API endpoints.
|
||||||
|
"""
|
||||||
rejected = rejected or []
|
rejected = rejected or []
|
||||||
if rejected:
|
if rejected:
|
||||||
prompt = refine_instruction_with_history(query, rejected)
|
prompt = refine_instruction_with_history(query, rejected)
|
||||||
@@ -53,3 +63,87 @@ def generate_candidates(query: str, rejected=None, top_k=config.TOP_K, model_nam
|
|||||||
raw = call_qwen(prompt, temperature=0.9, max_tokens=1024, model_name=model_name)
|
raw = call_qwen(prompt, temperature=0.9, max_tokens=1024, model_name=model_name)
|
||||||
all_candidates = parse_candidates(raw)
|
all_candidates = parse_candidates(raw)
|
||||||
return cluster_and_select(all_candidates, top_k=top_k)
|
return cluster_and_select(all_candidates, top_k=top_k)
|
||||||
|
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# TRUE OPRO FUNCTIONS (System Instruction Optimization)
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
def generate_system_instruction_candidates(
|
||||||
|
task_description: str,
|
||||||
|
trajectory: List[Tuple[str, float]] = None,
|
||||||
|
top_k: int = config.TOP_K,
|
||||||
|
pool_size: int = None,
|
||||||
|
model_name: str = None
|
||||||
|
) -> List[str]:
|
||||||
|
"""
|
||||||
|
TRUE OPRO: Generates optimized system instruction candidates.
|
||||||
|
|
||||||
|
This is the core OPRO function that generates system instructions based on
|
||||||
|
performance trajectory (if available) or initial candidates (if starting fresh).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_description: Description of the task the LLM should perform
|
||||||
|
trajectory: Optional list of (instruction, score) tuples from previous iterations
|
||||||
|
top_k: Number of diverse candidates to return (default: config.TOP_K = 5)
|
||||||
|
pool_size: Number of candidates to generate before clustering (default: config.GENERATION_POOL_SIZE = 10)
|
||||||
|
model_name: Optional model name to use for generation
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of top-k diverse system instruction candidates
|
||||||
|
"""
|
||||||
|
pool_size = pool_size or config.GENERATION_POOL_SIZE
|
||||||
|
|
||||||
|
# Generate the meta-prompt based on whether we have trajectory data
|
||||||
|
if trajectory and len(trajectory) > 0:
|
||||||
|
# Sort trajectory by score (highest first)
|
||||||
|
sorted_trajectory = sorted(trajectory, key=lambda x: x[1], reverse=True)
|
||||||
|
meta_prompt = generate_optimized_system_instruction(task_description, sorted_trajectory, pool_size)
|
||||||
|
else:
|
||||||
|
# No trajectory yet, generate initial candidates
|
||||||
|
meta_prompt = generate_initial_system_instruction_candidates(task_description, pool_size)
|
||||||
|
|
||||||
|
# Use the optimizer LLM to generate candidates
|
||||||
|
raw = call_qwen(meta_prompt, temperature=0.9, max_tokens=1024, model_name=model_name)
|
||||||
|
|
||||||
|
# Parse the generated candidates
|
||||||
|
all_candidates = parse_candidates(raw)
|
||||||
|
|
||||||
|
# Cluster and select diverse representatives
|
||||||
|
return cluster_and_select(all_candidates, top_k=top_k)
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate_system_instruction(
|
||||||
|
system_instruction: str,
|
||||||
|
test_cases: List[Tuple[str, str]],
|
||||||
|
model_name: str = None
|
||||||
|
) -> float:
|
||||||
|
"""
|
||||||
|
TRUE OPRO: Evaluates a system instruction's performance on test cases.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
system_instruction: The system instruction to evaluate
|
||||||
|
test_cases: List of (input, expected_output) tuples
|
||||||
|
model_name: Optional model name to use for evaluation
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Performance score (0.0 to 1.0)
|
||||||
|
"""
|
||||||
|
if not test_cases:
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
correct = 0
|
||||||
|
total = len(test_cases)
|
||||||
|
|
||||||
|
for input_text, expected_output in test_cases:
|
||||||
|
# Construct the full prompt with system instruction
|
||||||
|
full_prompt = f"{system_instruction}\n\n{input_text}"
|
||||||
|
|
||||||
|
# Get LLM response
|
||||||
|
response = call_qwen(full_prompt, temperature=0.2, max_tokens=512, model_name=model_name)
|
||||||
|
|
||||||
|
# Simple exact match scoring (can be replaced with more sophisticated metrics)
|
||||||
|
if expected_output.strip().lower() in response.strip().lower():
|
||||||
|
correct += 1
|
||||||
|
|
||||||
|
return correct / total
|
||||||
|
|||||||
@@ -14,6 +14,7 @@ DEFAULT_EMBED_MODEL = "qwen3-embedding:4b"
|
|||||||
XINFERENCE_EMBED_URL = "http://127.0.0.1:9997/models/bge-base-zh/embed"
|
XINFERENCE_EMBED_URL = "http://127.0.0.1:9997/models/bge-base-zh/embed"
|
||||||
|
|
||||||
# Clustering/selection
|
# Clustering/selection
|
||||||
TOP_K = 5
|
GENERATION_POOL_SIZE = 10 # Generate this many candidates before clustering
|
||||||
|
TOP_K = 5 # Return this many diverse candidates to user
|
||||||
CLUSTER_DISTANCE_THRESHOLD = 0.15
|
CLUSTER_DISTANCE_THRESHOLD = 0.15
|
||||||
|
|
||||||
|
|||||||
164
examples/opro_demo.py
Normal file
164
examples/opro_demo.py
Normal file
@@ -0,0 +1,164 @@
|
|||||||
|
"""
|
||||||
|
TRUE OPRO Demo Script
|
||||||
|
|
||||||
|
This script demonstrates the true OPRO (Optimization by PROmpting) functionality.
|
||||||
|
It shows how to:
|
||||||
|
1. Generate initial system instruction candidates
|
||||||
|
2. Evaluate them on test cases
|
||||||
|
3. Use the performance trajectory to generate better candidates
|
||||||
|
"""
|
||||||
|
|
||||||
|
import sys
|
||||||
|
sys.path.insert(0, '.')
|
||||||
|
|
||||||
|
from _qwen_xinference_demo.opro.user_prompt_optimizer import (
|
||||||
|
generate_system_instruction_candidates,
|
||||||
|
evaluate_system_instruction
|
||||||
|
)
|
||||||
|
import config
|
||||||
|
|
||||||
|
|
||||||
|
def demo_opro_workflow():
|
||||||
|
"""
|
||||||
|
Demonstrates a complete OPRO optimization workflow.
|
||||||
|
"""
|
||||||
|
print("=" * 80)
|
||||||
|
print("TRUE OPRO Demo - System Instruction Optimization")
|
||||||
|
print("=" * 80)
|
||||||
|
print(f"Pool Size: {config.GENERATION_POOL_SIZE} candidates → Clustered to Top {config.TOP_K}")
|
||||||
|
|
||||||
|
# Define the task
|
||||||
|
task_description = """
|
||||||
|
任务:将用户输入的中文句子翻译成英文。
|
||||||
|
要求:翻译准确、自然、符合英语表达习惯。
|
||||||
|
"""
|
||||||
|
|
||||||
|
print(f"\n📋 Task Description:\n{task_description}")
|
||||||
|
|
||||||
|
# Define test cases for evaluation
|
||||||
|
test_cases = [
|
||||||
|
("你好,很高兴见到你", "Hello, nice to meet you"),
|
||||||
|
("今天天气真好", "The weather is really nice today"),
|
||||||
|
("我喜欢学习编程", "I like learning programming"),
|
||||||
|
("这本书很有趣", "This book is very interesting"),
|
||||||
|
]
|
||||||
|
|
||||||
|
print(f"\n🧪 Test Cases: {len(test_cases)} examples")
|
||||||
|
for i, (input_text, expected) in enumerate(test_cases, 1):
|
||||||
|
print(f" {i}. '{input_text}' → '{expected}'")
|
||||||
|
|
||||||
|
# Iteration 1: Generate initial candidates
|
||||||
|
print("\n" + "=" * 80)
|
||||||
|
print("🔄 Iteration 1: Generating Initial System Instruction Candidates")
|
||||||
|
print("=" * 80)
|
||||||
|
|
||||||
|
print("\n⏳ Generating candidates... (this may take a moment)")
|
||||||
|
candidates_round1 = generate_system_instruction_candidates(
|
||||||
|
task_description=task_description,
|
||||||
|
trajectory=None, # No history yet
|
||||||
|
top_k=3,
|
||||||
|
model_name=None # Use default model
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"\n✅ Generated {len(candidates_round1)} candidates:")
|
||||||
|
for i, candidate in enumerate(candidates_round1, 1):
|
||||||
|
print(f"\n Candidate {i}:")
|
||||||
|
print(f" {candidate[:100]}..." if len(candidate) > 100 else f" {candidate}")
|
||||||
|
|
||||||
|
# Evaluate each candidate
|
||||||
|
print("\n" + "-" * 80)
|
||||||
|
print("📊 Evaluating Candidates on Test Cases")
|
||||||
|
print("-" * 80)
|
||||||
|
|
||||||
|
trajectory = []
|
||||||
|
for i, candidate in enumerate(candidates_round1, 1):
|
||||||
|
print(f"\n⏳ Evaluating Candidate {i}...")
|
||||||
|
score = evaluate_system_instruction(
|
||||||
|
system_instruction=candidate,
|
||||||
|
test_cases=test_cases,
|
||||||
|
model_name=None
|
||||||
|
)
|
||||||
|
trajectory.append((candidate, score))
|
||||||
|
print(f" Score: {score:.2%}")
|
||||||
|
|
||||||
|
# Sort by score
|
||||||
|
trajectory.sort(key=lambda x: x[1], reverse=True)
|
||||||
|
|
||||||
|
print("\n📈 Performance Summary (Round 1):")
|
||||||
|
for i, (candidate, score) in enumerate(trajectory, 1):
|
||||||
|
print(f" {i}. Score: {score:.2%} - {candidate[:60]}...")
|
||||||
|
|
||||||
|
best_score = trajectory[0][1]
|
||||||
|
print(f"\n🏆 Best Score: {best_score:.2%}")
|
||||||
|
|
||||||
|
# Iteration 2: Generate optimized candidates based on trajectory
|
||||||
|
print("\n" + "=" * 80)
|
||||||
|
print("🔄 Iteration 2: Generating Optimized System Instructions")
|
||||||
|
print("=" * 80)
|
||||||
|
print(f"\n💡 Using performance trajectory to generate better candidates...")
|
||||||
|
print(f" Goal: Beat current best score of {best_score:.2%}")
|
||||||
|
|
||||||
|
print("\n⏳ Generating optimized candidates...")
|
||||||
|
candidates_round2 = generate_system_instruction_candidates(
|
||||||
|
task_description=task_description,
|
||||||
|
trajectory=trajectory, # Use performance history
|
||||||
|
top_k=3,
|
||||||
|
model_name=None
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"\n✅ Generated {len(candidates_round2)} optimized candidates:")
|
||||||
|
for i, candidate in enumerate(candidates_round2, 1):
|
||||||
|
print(f"\n Candidate {i}:")
|
||||||
|
print(f" {candidate[:100]}..." if len(candidate) > 100 else f" {candidate}")
|
||||||
|
|
||||||
|
# Evaluate new candidates
|
||||||
|
print("\n" + "-" * 80)
|
||||||
|
print("📊 Evaluating Optimized Candidates")
|
||||||
|
print("-" * 80)
|
||||||
|
|
||||||
|
for i, candidate in enumerate(candidates_round2, 1):
|
||||||
|
print(f"\n⏳ Evaluating Optimized Candidate {i}...")
|
||||||
|
score = evaluate_system_instruction(
|
||||||
|
system_instruction=candidate,
|
||||||
|
test_cases=test_cases,
|
||||||
|
model_name=None
|
||||||
|
)
|
||||||
|
trajectory.append((candidate, score))
|
||||||
|
print(f" Score: {score:.2%}")
|
||||||
|
if score > best_score:
|
||||||
|
print(f" 🎉 NEW BEST! Improved from {best_score:.2%} to {score:.2%}")
|
||||||
|
best_score = score
|
||||||
|
|
||||||
|
# Final summary
|
||||||
|
trajectory.sort(key=lambda x: x[1], reverse=True)
|
||||||
|
|
||||||
|
print("\n" + "=" * 80)
|
||||||
|
print("🏁 Final Results")
|
||||||
|
print("=" * 80)
|
||||||
|
print(f"\n🏆 Best System Instruction (Score: {trajectory[0][1]:.2%}):")
|
||||||
|
print(f"\n{trajectory[0][0]}")
|
||||||
|
|
||||||
|
print("\n📊 All Candidates Ranked:")
|
||||||
|
for i, (candidate, score) in enumerate(trajectory[:5], 1):
|
||||||
|
print(f"\n {i}. Score: {score:.2%}")
|
||||||
|
print(f" {candidate[:80]}...")
|
||||||
|
|
||||||
|
print("\n" + "=" * 80)
|
||||||
|
print("✅ OPRO Demo Complete!")
|
||||||
|
print("=" * 80)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
print("\n⚠️ NOTE: This demo requires:")
|
||||||
|
print(" 1. Ollama running locally (http://127.0.0.1:11434)")
|
||||||
|
print(" 2. A Qwen model available (e.g., qwen3:8b)")
|
||||||
|
print(" 3. An embedding model (e.g., qwen3-embedding:4b)")
|
||||||
|
print("\n Press Ctrl+C to cancel, or Enter to continue...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
input()
|
||||||
|
demo_opro_workflow()
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("\n\n❌ Demo cancelled by user.")
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
507
frontend/opro.html
Normal file
507
frontend/opro.html
Normal file
@@ -0,0 +1,507 @@
|
|||||||
|
<!DOCTYPE html>
|
||||||
|
<html lang="zh-CN">
|
||||||
|
<head>
|
||||||
|
<meta charset="UTF-8">
|
||||||
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||||
|
<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate">
|
||||||
|
<meta http-equiv="Pragma" content="no-cache">
|
||||||
|
<meta http-equiv="Expires" content="0">
|
||||||
|
<title>OPRO - System Instruction Optimizer</title>
|
||||||
|
<script crossorigin src="https://unpkg.com/react@18/umd/react.production.min.js"></script>
|
||||||
|
<script crossorigin src="https://unpkg.com/react-dom@18/umd/react-dom.production.min.js"></script>
|
||||||
|
<script src="https://cdn.tailwindcss.com"></script>
|
||||||
|
<style>
|
||||||
|
body {
|
||||||
|
margin: 0;
|
||||||
|
font-family: 'Google Sans', 'Segoe UI', Roboto, sans-serif;
|
||||||
|
background: #f8f9fa;
|
||||||
|
}
|
||||||
|
.chat-container { height: 100vh; display: flex; }
|
||||||
|
.scrollbar-hide::-webkit-scrollbar { display: none; }
|
||||||
|
.scrollbar-hide { -ms-overflow-style: none; scrollbar-width: none; }
|
||||||
|
.sidebar-collapsed { width: 60px; }
|
||||||
|
.sidebar-expanded { width: 260px; }
|
||||||
|
.instruction-card {
|
||||||
|
transition: all 0.15s ease;
|
||||||
|
border: 1px solid #e8eaed;
|
||||||
|
}
|
||||||
|
.instruction-card:hover {
|
||||||
|
border-color: #dadce0;
|
||||||
|
box-shadow: 0 1px 3px rgba(60,64,67,0.15);
|
||||||
|
}
|
||||||
|
.loading-dots::after {
|
||||||
|
content: '...';
|
||||||
|
animation: dots 1.5s steps(4, end) infinite;
|
||||||
|
}
|
||||||
|
@keyframes dots {
|
||||||
|
0%, 20% { content: '.'; }
|
||||||
|
40% { content: '..'; }
|
||||||
|
60%, 100% { content: '...'; }
|
||||||
|
}
|
||||||
|
</style>
|
||||||
|
</head>
|
||||||
|
<body>
|
||||||
|
<div id="root"></div>
|
||||||
|
|
||||||
|
<script>
|
||||||
|
const { useState, useEffect, useRef } = React;
|
||||||
|
const API_BASE = 'http://127.0.0.1:8010';
|
||||||
|
|
||||||
|
// Main App Component
|
||||||
|
function App() {
|
||||||
|
const [sidebarOpen, setSidebarOpen] = useState(false);
|
||||||
|
const [runs, setRuns] = useState([]);
|
||||||
|
const [currentRunId, setCurrentRunId] = useState(null);
|
||||||
|
const [messages, setMessages] = useState([]);
|
||||||
|
const [inputValue, setInputValue] = useState('');
|
||||||
|
const [loading, setLoading] = useState(false);
|
||||||
|
const [models, setModels] = useState([]);
|
||||||
|
const [selectedModel, setSelectedModel] = useState('');
|
||||||
|
const chatEndRef = useRef(null);
|
||||||
|
|
||||||
|
// Load runs and models on mount
|
||||||
|
useEffect(() => {
|
||||||
|
loadRuns();
|
||||||
|
loadModels();
|
||||||
|
}, []);
|
||||||
|
|
||||||
|
async function loadModels() {
|
||||||
|
try {
|
||||||
|
const res = await fetch(`${API_BASE}/models`);
|
||||||
|
const data = await res.json();
|
||||||
|
if (data.success && data.data.models) {
|
||||||
|
setModels(data.data.models);
|
||||||
|
if (data.data.models.length > 0) {
|
||||||
|
setSelectedModel(data.data.models[0]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} catch (err) {
|
||||||
|
console.error('Failed to load models:', err);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Auto-scroll chat
|
||||||
|
useEffect(() => {
|
||||||
|
chatEndRef.current?.scrollIntoView({ behavior: 'smooth' });
|
||||||
|
}, [messages]);
|
||||||
|
|
||||||
|
async function loadRuns() {
|
||||||
|
try {
|
||||||
|
const res = await fetch(`${API_BASE}/opro/runs`);
|
||||||
|
const data = await res.json();
|
||||||
|
if (data.success) {
|
||||||
|
setRuns(data.data.runs || []);
|
||||||
|
}
|
||||||
|
} catch (err) {
|
||||||
|
console.error('Failed to load runs:', err);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async function createNewRun(taskDescription) {
|
||||||
|
setLoading(true);
|
||||||
|
try {
|
||||||
|
// Create run
|
||||||
|
const res = await fetch(`${API_BASE}/opro/create`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify({
|
||||||
|
task_description: taskDescription,
|
||||||
|
test_cases: [],
|
||||||
|
model_name: selectedModel || undefined
|
||||||
|
})
|
||||||
|
});
|
||||||
|
const data = await res.json();
|
||||||
|
|
||||||
|
if (!data.success) {
|
||||||
|
throw new Error(data.error || 'Failed to create run');
|
||||||
|
}
|
||||||
|
|
||||||
|
const runId = data.data.run_id;
|
||||||
|
setCurrentRunId(runId);
|
||||||
|
|
||||||
|
// Add user message
|
||||||
|
setMessages([{ role: 'user', content: taskDescription }]);
|
||||||
|
|
||||||
|
// Generate and evaluate candidates
|
||||||
|
await generateCandidates(runId);
|
||||||
|
|
||||||
|
// Reload runs list
|
||||||
|
await loadRuns();
|
||||||
|
} catch (err) {
|
||||||
|
alert('创建任务失败: ' + err.message);
|
||||||
|
} finally {
|
||||||
|
setLoading(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async function generateCandidates(runId) {
|
||||||
|
setLoading(true);
|
||||||
|
try {
|
||||||
|
const res = await fetch(`${API_BASE}/opro/generate_and_evaluate`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify({
|
||||||
|
run_id: runId,
|
||||||
|
top_k: 5,
|
||||||
|
auto_evaluate: false // Use diversity-based selection
|
||||||
|
})
|
||||||
|
});
|
||||||
|
const data = await res.json();
|
||||||
|
|
||||||
|
if (!data.success) {
|
||||||
|
throw new Error(data.error || 'Failed to generate candidates');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add assistant message with candidates
|
||||||
|
setMessages(prev => [...prev, {
|
||||||
|
role: 'assistant',
|
||||||
|
type: 'candidates',
|
||||||
|
candidates: data.data.candidates,
|
||||||
|
iteration: data.data.iteration
|
||||||
|
}]);
|
||||||
|
} catch (err) {
|
||||||
|
alert('生成候选指令失败: ' + err.message);
|
||||||
|
} finally {
|
||||||
|
setLoading(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async function executeInstruction(instruction, userInput) {
|
||||||
|
setLoading(true);
|
||||||
|
try {
|
||||||
|
const res = await fetch(`${API_BASE}/opro/execute`, {
|
||||||
|
method: 'POST',
|
||||||
|
headers: { 'Content-Type': 'application/json' },
|
||||||
|
body: JSON.stringify({
|
||||||
|
instruction: instruction,
|
||||||
|
user_input: userInput || '请执行任务',
|
||||||
|
model_name: selectedModel || undefined
|
||||||
|
})
|
||||||
|
});
|
||||||
|
const data = await res.json();
|
||||||
|
|
||||||
|
if (!data.success) {
|
||||||
|
throw new Error(data.error || 'Failed to execute');
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add execution result
|
||||||
|
setMessages(prev => [...prev, {
|
||||||
|
role: 'assistant',
|
||||||
|
type: 'execution',
|
||||||
|
instruction: instruction,
|
||||||
|
response: data.data.response
|
||||||
|
}]);
|
||||||
|
} catch (err) {
|
||||||
|
alert('执行失败: ' + err.message);
|
||||||
|
} finally {
|
||||||
|
setLoading(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function handleSendMessage() {
|
||||||
|
const msg = inputValue.trim();
|
||||||
|
if (!msg || loading) return;
|
||||||
|
|
||||||
|
setInputValue('');
|
||||||
|
|
||||||
|
if (!currentRunId) {
|
||||||
|
// Create new run with task description
|
||||||
|
createNewRun(msg);
|
||||||
|
} else {
|
||||||
|
// Continue optimization or execute
|
||||||
|
// For now, just show message
|
||||||
|
setMessages(prev => [...prev, { role: 'user', content: msg }]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function handleContinueOptimize() {
|
||||||
|
if (!currentRunId || loading) return;
|
||||||
|
generateCandidates(currentRunId);
|
||||||
|
}
|
||||||
|
|
||||||
|
function handleExecute(instruction) {
|
||||||
|
if (loading) return;
|
||||||
|
const userInput = prompt('请输入要处理的内容(可选):');
|
||||||
|
executeInstruction(instruction, userInput);
|
||||||
|
}
|
||||||
|
|
||||||
|
function handleCopyInstruction(instruction) {
|
||||||
|
navigator.clipboard.writeText(instruction).then(() => {
|
||||||
|
// Could add a toast notification here
|
||||||
|
console.log('Instruction copied to clipboard');
|
||||||
|
}).catch(err => {
|
||||||
|
console.error('Failed to copy:', err);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
function handleNewTask() {
|
||||||
|
setCurrentRunId(null);
|
||||||
|
setMessages([]);
|
||||||
|
setInputValue('');
|
||||||
|
}
|
||||||
|
|
||||||
|
async function loadRun(runId) {
|
||||||
|
setLoading(true);
|
||||||
|
try {
|
||||||
|
const res = await fetch(`${API_BASE}/opro/run/${runId}`);
|
||||||
|
const data = await res.json();
|
||||||
|
|
||||||
|
if (!data.success) {
|
||||||
|
throw new Error(data.error || 'Failed to load run');
|
||||||
|
}
|
||||||
|
|
||||||
|
const run = data.data;
|
||||||
|
setCurrentRunId(runId);
|
||||||
|
|
||||||
|
// Reconstruct messages from run data
|
||||||
|
const msgs = [
|
||||||
|
{ role: 'user', content: run.task_description }
|
||||||
|
];
|
||||||
|
|
||||||
|
if (run.current_candidates && run.current_candidates.length > 0) {
|
||||||
|
msgs.push({
|
||||||
|
role: 'assistant',
|
||||||
|
type: 'candidates',
|
||||||
|
candidates: run.current_candidates.map(c => ({ instruction: c, score: null })),
|
||||||
|
iteration: run.iteration
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
setMessages(msgs);
|
||||||
|
} catch (err) {
|
||||||
|
alert('加载任务失败: ' + err.message);
|
||||||
|
} finally {
|
||||||
|
setLoading(false);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return React.createElement('div', { className: 'chat-container' },
|
||||||
|
// Sidebar
|
||||||
|
React.createElement('div', {
|
||||||
|
className: `bg-white border-r border-gray-200 transition-all duration-300 flex flex-col ${sidebarOpen ? 'sidebar-expanded' : 'sidebar-collapsed'}`
|
||||||
|
},
|
||||||
|
// Header area - Collapse button only
|
||||||
|
React.createElement('div', { className: 'p-3 border-b border-gray-200 flex items-center justify-between' },
|
||||||
|
sidebarOpen ? React.createElement('button', {
|
||||||
|
onClick: () => setSidebarOpen(false),
|
||||||
|
className: 'p-2 text-gray-600 hover:bg-gray-100 rounded-lg transition-colors'
|
||||||
|
},
|
||||||
|
React.createElement('svg', { width: '20', height: '20', viewBox: '0 0 24 24', fill: 'none', stroke: 'currentColor', strokeWidth: '2' },
|
||||||
|
React.createElement('path', { d: 'M15 18l-6-6 6-6' })
|
||||||
|
)
|
||||||
|
) : React.createElement('button', {
|
||||||
|
onClick: () => setSidebarOpen(true),
|
||||||
|
className: 'w-full p-2 text-gray-600 hover:bg-gray-100 rounded-lg transition-colors flex items-center justify-center'
|
||||||
|
},
|
||||||
|
React.createElement('svg', { width: '20', height: '20', viewBox: '0 0 24 24', fill: 'none', stroke: 'currentColor', strokeWidth: '2' },
|
||||||
|
React.createElement('path', { d: 'M3 12h18M3 6h18M3 18h18' })
|
||||||
|
)
|
||||||
|
)
|
||||||
|
),
|
||||||
|
// Content area
|
||||||
|
React.createElement('div', { className: 'flex-1 overflow-y-auto scrollbar-hide p-2 flex flex-col' },
|
||||||
|
sidebarOpen ? React.createElement(React.Fragment, null,
|
||||||
|
// New task button (expanded)
|
||||||
|
React.createElement('button', {
|
||||||
|
onClick: handleNewTask,
|
||||||
|
className: 'mb-3 px-4 py-2.5 bg-white border border-gray-300 hover:bg-gray-50 rounded-lg transition-colors flex items-center justify-center gap-2 text-gray-700 font-medium'
|
||||||
|
},
|
||||||
|
React.createElement('span', { className: 'text-lg' }, '+'),
|
||||||
|
React.createElement('span', null, '新建会话')
|
||||||
|
),
|
||||||
|
// Sessions list
|
||||||
|
runs.length > 0 && React.createElement('div', { className: 'text-xs text-gray-500 mb-2 px-2' }, '会话列表'),
|
||||||
|
runs.map(run =>
|
||||||
|
React.createElement('div', {
|
||||||
|
key: run.run_id,
|
||||||
|
onClick: () => loadRun(run.run_id),
|
||||||
|
className: `p-3 mb-1 rounded-lg cursor-pointer transition-colors flex items-center gap-2 ${
|
||||||
|
currentRunId === run.run_id ? 'bg-gray-100' : 'hover:bg-gray-50'
|
||||||
|
}`
|
||||||
|
},
|
||||||
|
React.createElement('svg', {
|
||||||
|
width: '16',
|
||||||
|
height: '16',
|
||||||
|
viewBox: '0 0 24 24',
|
||||||
|
fill: 'none',
|
||||||
|
stroke: 'currentColor',
|
||||||
|
strokeWidth: '2',
|
||||||
|
className: 'flex-shrink-0 text-gray-500'
|
||||||
|
},
|
||||||
|
React.createElement('path', { d: 'M21 15a2 2 0 0 1-2 2H7l-4 4V5a2 2 0 0 1 2-2h14a2 2 0 0 1 2 2z' })
|
||||||
|
),
|
||||||
|
React.createElement('div', { className: 'text-sm text-gray-800 truncate flex-1' },
|
||||||
|
run.task_description
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
) : React.createElement('button', {
|
||||||
|
onClick: handleNewTask,
|
||||||
|
className: 'p-2 text-gray-600 hover:bg-gray-100 rounded-lg transition-colors flex items-center justify-center',
|
||||||
|
title: '新建会话'
|
||||||
|
},
|
||||||
|
React.createElement('svg', { width: '24', height: '24', viewBox: '0 0 24 24', fill: 'none', stroke: 'currentColor', strokeWidth: '2' },
|
||||||
|
React.createElement('path', { d: 'M12 5v14M5 12h14' })
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
),
|
||||||
|
|
||||||
|
// Main Chat Area
|
||||||
|
React.createElement('div', { className: 'flex-1 flex flex-col bg-white' },
|
||||||
|
// Header
|
||||||
|
React.createElement('div', { className: 'px-4 py-3 border-b border-gray-200 bg-white flex items-center gap-3' },
|
||||||
|
React.createElement('h1', { className: 'text-lg font-normal text-gray-800' },
|
||||||
|
'OPRO'
|
||||||
|
)
|
||||||
|
),
|
||||||
|
|
||||||
|
// Chat Messages
|
||||||
|
React.createElement('div', { className: 'flex-1 overflow-y-auto scrollbar-hide p-6 space-y-6 max-w-4xl mx-auto w-full' },
|
||||||
|
messages.map((msg, idx) => {
|
||||||
|
if (msg.role === 'user') {
|
||||||
|
return React.createElement('div', { key: idx, className: 'flex justify-end' },
|
||||||
|
React.createElement('div', { className: 'max-w-2xl bg-gray-100 text-gray-800 rounded-2xl px-5 py-3' },
|
||||||
|
msg.content
|
||||||
|
)
|
||||||
|
);
|
||||||
|
} else if (msg.type === 'candidates') {
|
||||||
|
return React.createElement('div', { key: idx, className: 'flex justify-start' },
|
||||||
|
React.createElement('div', { className: 'w-full' },
|
||||||
|
React.createElement('div', { className: 'mb-3' },
|
||||||
|
React.createElement('div', { className: 'text-sm text-gray-600' },
|
||||||
|
`优化后的提示词(第 ${msg.iteration} 轮)`
|
||||||
|
),
|
||||||
|
),
|
||||||
|
msg.candidates.map((cand, cidx) =>
|
||||||
|
React.createElement('div', {
|
||||||
|
key: cidx,
|
||||||
|
className: 'instruction-card bg-white rounded-xl p-5 mb-3'
|
||||||
|
},
|
||||||
|
React.createElement('div', { className: 'flex items-start gap-3' },
|
||||||
|
React.createElement('div', { className: 'flex-shrink-0 w-7 h-7 bg-gray-200 text-gray-700 rounded-full flex items-center justify-center text-sm font-medium' },
|
||||||
|
cidx + 1
|
||||||
|
),
|
||||||
|
React.createElement('div', { className: 'flex-1' },
|
||||||
|
React.createElement('div', { className: 'text-gray-800 mb-4 whitespace-pre-wrap leading-relaxed' },
|
||||||
|
cand.instruction
|
||||||
|
),
|
||||||
|
cand.score !== null && React.createElement('div', { className: 'text-xs text-gray-500 mb-3' },
|
||||||
|
`评分: ${cand.score.toFixed(4)}`
|
||||||
|
),
|
||||||
|
React.createElement('div', { className: 'flex gap-2' },
|
||||||
|
React.createElement('button', {
|
||||||
|
onClick: handleContinueOptimize,
|
||||||
|
disabled: loading,
|
||||||
|
className: 'px-4 py-2 bg-white border border-gray-300 text-gray-700 rounded-lg hover:bg-gray-50 disabled:bg-gray-100 disabled:text-gray-400 disabled:cursor-not-allowed transition-colors text-sm font-medium'
|
||||||
|
}, '继续优化'),
|
||||||
|
React.createElement('button', {
|
||||||
|
onClick: () => handleCopyInstruction(cand.instruction),
|
||||||
|
className: 'px-4 py-2 bg-white border border-gray-300 text-gray-700 rounded-lg hover:bg-gray-50 transition-colors text-sm font-medium flex items-center gap-1'
|
||||||
|
},
|
||||||
|
React.createElement('svg', { width: '16', height: '16', viewBox: '0 0 24 24', fill: 'none', stroke: 'currentColor', strokeWidth: '2' },
|
||||||
|
React.createElement('rect', { x: '9', y: '9', width: '13', height: '13', rx: '2', ry: '2' }),
|
||||||
|
React.createElement('path', { d: 'M5 15H4a2 2 0 0 1-2-2V4a2 2 0 0 1 2-2h9a2 2 0 0 1 2 2v1' })
|
||||||
|
),
|
||||||
|
'复制'
|
||||||
|
),
|
||||||
|
React.createElement('button', {
|
||||||
|
onClick: () => handleExecute(cand.instruction),
|
||||||
|
disabled: loading,
|
||||||
|
className: 'px-4 py-2 bg-gray-900 text-white rounded-lg hover:bg-gray-800 disabled:bg-gray-300 disabled:cursor-not-allowed transition-colors text-sm font-medium'
|
||||||
|
}, '执行此指令')
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
);
|
||||||
|
} else if (msg.type === 'execution') {
|
||||||
|
return React.createElement('div', { key: idx, className: 'flex justify-start' },
|
||||||
|
React.createElement('div', { className: 'max-w-2xl bg-gray-50 border border-gray-200 rounded-2xl p-5' },
|
||||||
|
React.createElement('div', { className: 'text-xs text-gray-600 mb-2 font-medium' },
|
||||||
|
'执行结果'
|
||||||
|
),
|
||||||
|
React.createElement('div', { className: 'text-gray-800 whitespace-pre-wrap leading-relaxed' },
|
||||||
|
msg.response
|
||||||
|
)
|
||||||
|
)
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}),
|
||||||
|
loading && React.createElement('div', { className: 'flex justify-start' },
|
||||||
|
React.createElement('div', { className: 'bg-gray-100 rounded-2xl px-5 py-3 text-gray-600' },
|
||||||
|
React.createElement('span', { className: 'loading-dots' }, '思考中')
|
||||||
|
)
|
||||||
|
),
|
||||||
|
React.createElement('div', { ref: chatEndRef })
|
||||||
|
),
|
||||||
|
|
||||||
|
// Input Area
|
||||||
|
React.createElement('div', { className: 'p-6 bg-white max-w-4xl mx-auto w-full' },
|
||||||
|
React.createElement('div', { className: 'relative' },
|
||||||
|
React.createElement('div', { className: 'bg-white border border-gray-300 rounded-3xl shadow-sm hover:shadow-md transition-shadow focus-within:shadow-md focus-within:border-gray-400' },
|
||||||
|
// Textarea
|
||||||
|
React.createElement('textarea', {
|
||||||
|
value: inputValue,
|
||||||
|
onChange: (e) => setInputValue(e.target.value),
|
||||||
|
onKeyPress: (e) => {
|
||||||
|
if (e.key === 'Enter' && !e.shiftKey) {
|
||||||
|
e.preventDefault();
|
||||||
|
handleSendMessage();
|
||||||
|
}
|
||||||
|
},
|
||||||
|
placeholder: currentRunId ? '输入消息...' : '在此输入提示词',
|
||||||
|
disabled: loading,
|
||||||
|
rows: 3,
|
||||||
|
className: 'w-full px-5 pt-4 pb-2 bg-transparent focus:outline-none disabled:bg-transparent text-gray-800 placeholder-gray-500 resize-none'
|
||||||
|
}),
|
||||||
|
// Toolbar
|
||||||
|
React.createElement('div', { className: 'flex items-center justify-between px-4 pb-3 pt-1 border-t border-gray-100' },
|
||||||
|
// Left side - Model selector
|
||||||
|
React.createElement('div', { className: 'flex items-center gap-2' },
|
||||||
|
React.createElement('label', { className: 'text-xs text-gray-600' }, '模型:'),
|
||||||
|
React.createElement('select', {
|
||||||
|
value: selectedModel,
|
||||||
|
onChange: (e) => setSelectedModel(e.target.value),
|
||||||
|
className: 'text-sm px-2 py-1 border border-gray-300 rounded-lg bg-white text-gray-700 focus:outline-none focus:border-gray-400 cursor-pointer'
|
||||||
|
},
|
||||||
|
models.map(model =>
|
||||||
|
React.createElement('option', { key: model, value: model }, model)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
),
|
||||||
|
// Right side - Send button
|
||||||
|
React.createElement('button', {
|
||||||
|
onClick: handleSendMessage,
|
||||||
|
disabled: loading || !inputValue.trim(),
|
||||||
|
className: 'p-2.5 bg-gray-100 text-gray-700 rounded-full hover:bg-gray-200 disabled:bg-gray-50 disabled:text-gray-300 disabled:cursor-not-allowed transition-colors flex items-center justify-center'
|
||||||
|
},
|
||||||
|
React.createElement('svg', {
|
||||||
|
width: '20',
|
||||||
|
height: '20',
|
||||||
|
viewBox: '0 0 24 24',
|
||||||
|
fill: 'currentColor'
|
||||||
|
},
|
||||||
|
React.createElement('path', { d: 'M2.01 21L23 12 2.01 3 2 10l15 2-15 2z' })
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
),
|
||||||
|
!currentRunId && React.createElement('div', { className: 'text-xs text-gray-500 mt-3 px-4' },
|
||||||
|
'输入任务描述后,AI 将为你生成优化的系统指令'
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Render App
|
||||||
|
const root = ReactDOM.createRoot(document.getElementById('root'));
|
||||||
|
root.render(React.createElement(App));
|
||||||
|
</script>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
|
||||||
184
test_opro_api.py
Normal file
184
test_opro_api.py
Normal file
@@ -0,0 +1,184 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Test script for TRUE OPRO API endpoints.
|
||||||
|
|
||||||
|
This script tests the complete OPRO workflow:
|
||||||
|
1. Create OPRO run
|
||||||
|
2. Generate initial candidates
|
||||||
|
3. Evaluate candidates
|
||||||
|
4. Generate optimized candidates
|
||||||
|
5. View results
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
python test_opro_api.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import requests
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
|
||||||
|
BASE_URL = "http://127.0.0.1:8010"
|
||||||
|
|
||||||
|
def print_section(title):
|
||||||
|
"""Print a section header."""
|
||||||
|
print("\n" + "=" * 60)
|
||||||
|
print(f" {title}")
|
||||||
|
print("=" * 60)
|
||||||
|
|
||||||
|
def test_opro_workflow():
|
||||||
|
"""Test the complete OPRO workflow."""
|
||||||
|
|
||||||
|
print_section("1. Create OPRO Run")
|
||||||
|
|
||||||
|
# Create a new OPRO run
|
||||||
|
create_req = {
|
||||||
|
"task_description": "将用户输入的中文翻译成英文,要求准确自然",
|
||||||
|
"test_cases": [
|
||||||
|
{"input": "你好", "expected_output": "Hello"},
|
||||||
|
{"input": "谢谢", "expected_output": "Thank you"},
|
||||||
|
{"input": "早上好", "expected_output": "Good morning"},
|
||||||
|
{"input": "晚安", "expected_output": "Good night"},
|
||||||
|
{"input": "再见", "expected_output": "Goodbye"}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
response = requests.post(f"{BASE_URL}/opro/create", json=create_req)
|
||||||
|
result = response.json()
|
||||||
|
|
||||||
|
if not result.get("success"):
|
||||||
|
print(f"❌ Failed to create OPRO run: {result}")
|
||||||
|
return
|
||||||
|
|
||||||
|
run_id = result["data"]["run_id"]
|
||||||
|
print(f"✅ Created OPRO run: {run_id}")
|
||||||
|
print(f" Task: {result['data']['task_description']}")
|
||||||
|
print(f" Test cases: {result['data']['num_test_cases']}")
|
||||||
|
|
||||||
|
# ========================================================================
|
||||||
|
print_section("2. Generate Initial Candidates")
|
||||||
|
|
||||||
|
iterate_req = {"run_id": run_id, "top_k": 5}
|
||||||
|
response = requests.post(f"{BASE_URL}/opro/iterate", json=iterate_req)
|
||||||
|
result = response.json()
|
||||||
|
|
||||||
|
if not result.get("success"):
|
||||||
|
print(f"❌ Failed to generate candidates: {result}")
|
||||||
|
return
|
||||||
|
|
||||||
|
candidates = result["data"]["candidates"]
|
||||||
|
print(f"✅ Generated {len(candidates)} initial candidates:")
|
||||||
|
for i, candidate in enumerate(candidates, 1):
|
||||||
|
print(f"\n [{i}] {candidate[:100]}...")
|
||||||
|
|
||||||
|
# ========================================================================
|
||||||
|
print_section("3. Evaluate Candidates")
|
||||||
|
|
||||||
|
scores = []
|
||||||
|
for i, candidate in enumerate(candidates, 1):
|
||||||
|
print(f"\n Evaluating candidate {i}/{len(candidates)}...")
|
||||||
|
|
||||||
|
eval_req = {
|
||||||
|
"run_id": run_id,
|
||||||
|
"instruction": candidate
|
||||||
|
}
|
||||||
|
|
||||||
|
response = requests.post(f"{BASE_URL}/opro/evaluate", json=eval_req)
|
||||||
|
result = response.json()
|
||||||
|
|
||||||
|
if result.get("success"):
|
||||||
|
score = result["data"]["score"]
|
||||||
|
scores.append(score)
|
||||||
|
is_best = "🏆" if result["data"]["is_new_best"] else ""
|
||||||
|
print(f" ✅ Score: {score:.4f} {is_best}")
|
||||||
|
else:
|
||||||
|
print(f" ❌ Evaluation failed: {result}")
|
||||||
|
|
||||||
|
time.sleep(0.5) # Small delay to avoid overwhelming the API
|
||||||
|
|
||||||
|
print(f"\n Average score: {sum(scores)/len(scores):.4f}")
|
||||||
|
print(f" Best score: {max(scores):.4f}")
|
||||||
|
|
||||||
|
# ========================================================================
|
||||||
|
print_section("4. Generate Optimized Candidates (Iteration 2)")
|
||||||
|
|
||||||
|
print(" Generating candidates based on performance trajectory...")
|
||||||
|
|
||||||
|
iterate_req = {"run_id": run_id, "top_k": 5}
|
||||||
|
response = requests.post(f"{BASE_URL}/opro/iterate", json=iterate_req)
|
||||||
|
result = response.json()
|
||||||
|
|
||||||
|
if not result.get("success"):
|
||||||
|
print(f"❌ Failed to generate optimized candidates: {result}")
|
||||||
|
return
|
||||||
|
|
||||||
|
optimized_candidates = result["data"]["candidates"]
|
||||||
|
print(f"✅ Generated {len(optimized_candidates)} optimized candidates:")
|
||||||
|
for i, candidate in enumerate(optimized_candidates, 1):
|
||||||
|
print(f"\n [{i}] {candidate[:100]}...")
|
||||||
|
|
||||||
|
# ========================================================================
|
||||||
|
print_section("5. View Run Details")
|
||||||
|
|
||||||
|
response = requests.get(f"{BASE_URL}/opro/run/{run_id}")
|
||||||
|
result = response.json()
|
||||||
|
|
||||||
|
if not result.get("success"):
|
||||||
|
print(f"❌ Failed to get run details: {result}")
|
||||||
|
return
|
||||||
|
|
||||||
|
data = result["data"]
|
||||||
|
print(f"✅ OPRO Run Details:")
|
||||||
|
print(f" Run ID: {data['run_id']}")
|
||||||
|
print(f" Task: {data['task_description']}")
|
||||||
|
print(f" Iteration: {data['iteration']}")
|
||||||
|
print(f" Status: {data['status']}")
|
||||||
|
print(f" Best Score: {data['best_score']:.4f}")
|
||||||
|
print(f"\n Best Instruction:")
|
||||||
|
print(f" {data['best_instruction'][:200]}...")
|
||||||
|
|
||||||
|
print(f"\n Top 5 Trajectory:")
|
||||||
|
for i, item in enumerate(data['trajectory'][:5], 1):
|
||||||
|
print(f" [{i}] Score: {item['score']:.4f}")
|
||||||
|
print(f" {item['instruction'][:80]}...")
|
||||||
|
|
||||||
|
# ========================================================================
|
||||||
|
print_section("6. List All Runs")
|
||||||
|
|
||||||
|
response = requests.get(f"{BASE_URL}/opro/runs")
|
||||||
|
result = response.json()
|
||||||
|
|
||||||
|
if result.get("success"):
|
||||||
|
runs = result["data"]["runs"]
|
||||||
|
print(f"✅ Total OPRO runs: {result['data']['total']}")
|
||||||
|
for run in runs:
|
||||||
|
print(f"\n Run: {run['run_id']}")
|
||||||
|
print(f" Task: {run['task_description'][:50]}...")
|
||||||
|
print(f" Iteration: {run['iteration']}, Best Score: {run['best_score']:.4f}")
|
||||||
|
|
||||||
|
print_section("✅ OPRO Workflow Test Complete!")
|
||||||
|
print(f"\nRun ID: {run_id}")
|
||||||
|
print("You can view details at:")
|
||||||
|
print(f" {BASE_URL}/opro/run/{run_id}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
print("=" * 60)
|
||||||
|
print(" TRUE OPRO API Test")
|
||||||
|
print("=" * 60)
|
||||||
|
print(f"\nBase URL: {BASE_URL}")
|
||||||
|
print("\nMake sure the API server is running:")
|
||||||
|
print(" uvicorn _qwen_xinference_demo.api:app --host 127.0.0.1 --port 8010")
|
||||||
|
print("\nStarting test in 3 seconds...")
|
||||||
|
time.sleep(3)
|
||||||
|
|
||||||
|
try:
|
||||||
|
test_opro_workflow()
|
||||||
|
except requests.exceptions.ConnectionError:
|
||||||
|
print("\n❌ ERROR: Could not connect to API server")
|
||||||
|
print("Please start the server first:")
|
||||||
|
print(" uvicorn _qwen_xinference_demo.api:app --host 127.0.0.1 --port 8010")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"\n❌ ERROR: {e}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
Reference in New Issue
Block a user