refactor: replace OPRO with simple iterative refinement
Major changes: - Remove fake OPRO evaluation (no more fake 0.5 scores) - Add simple refinement based on user selection - New endpoint: POST /opro/refine (selected + rejected instructions) - Update prompt generation to focus on comprehensive coverage instead of style variety - All generated instructions now start with role definition (你是一个...) - Update README to reflect new approach and API endpoints Technical details: - Added refine_based_on_selection() in prompt_utils.py - Added refine_instruction_candidates() in user_prompt_optimizer.py - Added OPRORefineReq model and /opro/refine endpoint in api.py - Updated frontend handleContinueOptimize() to use new refinement flow - Changed prompt requirements from 'different styles' to 'comprehensive coverage' - Added role definition requirement as first item in all prompt templates
This commit is contained in:
@@ -24,7 +24,8 @@ from .opro.session_state import (
|
||||
from .opro.user_prompt_optimizer import generate_candidates
|
||||
from .opro.user_prompt_optimizer import (
|
||||
generate_system_instruction_candidates,
|
||||
evaluate_system_instruction
|
||||
evaluate_system_instruction,
|
||||
refine_instruction_candidates
|
||||
)
|
||||
|
||||
from .opro.ollama_client import call_qwen
|
||||
@@ -159,6 +160,15 @@ class OPROExecuteReq(BaseModel):
|
||||
model_name: Optional[str] = None
|
||||
|
||||
|
||||
class OPRORefineReq(BaseModel):
|
||||
"""Request to refine based on selected instruction (simple iterative refinement, NOT OPRO)."""
|
||||
run_id: str
|
||||
selected_instruction: str
|
||||
rejected_instructions: List[str]
|
||||
top_k: Optional[int] = None
|
||||
pool_size: Optional[int] = None
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# LEGACY ENDPOINTS (Query Rewriting - NOT true OPRO)
|
||||
# ============================================================================
|
||||
@@ -696,3 +706,44 @@ def opro_execute(req: OPROExecuteReq):
|
||||
})
|
||||
except Exception as e:
|
||||
raise AppException(500, f"Execution failed: {e}", "EXECUTION_ERROR")
|
||||
|
||||
|
||||
@app.post("/opro/refine", tags=["opro-true"])
|
||||
def opro_refine(req: OPRORefineReq):
|
||||
"""
|
||||
Simple iterative refinement based on user selection (NOT OPRO).
|
||||
|
||||
This generates new candidates based on the selected instruction while avoiding rejected ones.
|
||||
No scoring, no trajectory - just straightforward refinement based on user preference.
|
||||
"""
|
||||
run = get_opro_run(req.run_id)
|
||||
if not run:
|
||||
raise AppException(404, "OPRO run not found", "RUN_NOT_FOUND")
|
||||
|
||||
top_k = req.top_k or config.TOP_K
|
||||
pool_size = req.pool_size or config.GENERATION_POOL_SIZE
|
||||
|
||||
try:
|
||||
candidates = refine_instruction_candidates(
|
||||
task_description=run["task_description"],
|
||||
selected_instruction=req.selected_instruction,
|
||||
rejected_instructions=req.rejected_instructions,
|
||||
top_k=top_k,
|
||||
pool_size=pool_size,
|
||||
model_name=run["model_name"]
|
||||
)
|
||||
|
||||
# Update iteration counter
|
||||
update_opro_iteration(req.run_id, candidates)
|
||||
|
||||
# Get updated run info
|
||||
run = get_opro_run(req.run_id)
|
||||
|
||||
return ok({
|
||||
"run_id": req.run_id,
|
||||
"iteration": run["iteration"],
|
||||
"candidates": [{"instruction": c, "score": None} for c in candidates],
|
||||
"task_description": run["task_description"]
|
||||
})
|
||||
except Exception as e:
|
||||
raise AppException(500, f"Refinement failed: {e}", "REFINEMENT_ERROR")
|
||||
|
||||
Reference in New Issue
Block a user