Compare commits
2 Commits
26f8e0c648
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 0b5319b31c | |||
| 6426b73a5e |
@@ -14,6 +14,8 @@ build
|
||||
.idea
|
||||
*.md
|
||||
!README.md
|
||||
# Include pre-downloaded Ollama binary for offline build
|
||||
!ollama-linux-amd64.tgz
|
||||
local_docs
|
||||
examples
|
||||
outputs
|
||||
|
||||
10
.gitignore
vendored
10
.gitignore
vendored
@@ -149,6 +149,16 @@ outputs/
|
||||
*.log
|
||||
local_docs/
|
||||
|
||||
# Docker build artifacts (DO NOT commit these - they are huge!)
|
||||
ollama-models/
|
||||
*.tar
|
||||
ollama-linux-amd64.tgz
|
||||
system-prompt-optimizer-*.tar
|
||||
*.tar.gz
|
||||
|
||||
# Backup files from scripts
|
||||
*.bak
|
||||
|
||||
# Node modules (if any frontend dependencies)
|
||||
node_modules/
|
||||
package-lock.json
|
||||
|
||||
113
DEPLOYMENT.md
113
DEPLOYMENT.md
@@ -117,19 +117,22 @@ rsync -avP --progress system-prompt-optimizer-allinone.tar user@server:/path/
|
||||
# 加载镜像(需要几分钟)
|
||||
docker load -i system-prompt-optimizer-allinone.tar
|
||||
|
||||
# 如果遇到权限错误,使用 sudo
|
||||
# sudo docker load -i system-prompt-optimizer-allinone.tar
|
||||
|
||||
# 验证镜像已加载
|
||||
docker images | grep system-prompt-optimizer
|
||||
```
|
||||
|
||||
#### 步骤 7: 启动服务
|
||||
|
||||
**CPU 模式(默认):**
|
||||
|
||||
```bash
|
||||
# 启动容器
|
||||
# 启动容器(推荐:仅暴露 Web 端口)
|
||||
docker run -d \
|
||||
--name system-prompt-optimizer \
|
||||
-p 8010:8010 \
|
||||
-p 11434:11434 \
|
||||
-v $(pwd)/outputs:/app/outputs \
|
||||
--restart unless-stopped \
|
||||
system-prompt-optimizer:allinone
|
||||
|
||||
@@ -137,7 +140,41 @@ docker run -d \
|
||||
docker logs -f system-prompt-optimizer
|
||||
```
|
||||
|
||||
**重要**:首次启动需要等待 30-60 秒,Ollama 服务需要初始化。
|
||||
**GPU 模式(推荐,如果有 NVIDIA GPU):**
|
||||
|
||||
```bash
|
||||
# 使用所有可用 GPU(推荐)
|
||||
docker run -d \
|
||||
--name system-prompt-optimizer \
|
||||
--gpus all \
|
||||
-p 8010:8010 \
|
||||
--restart unless-stopped \
|
||||
system-prompt-optimizer:allinone
|
||||
|
||||
# 或指定特定 GPU
|
||||
docker run -d \
|
||||
--name system-prompt-optimizer \
|
||||
--gpus '"device=0"' \
|
||||
-p 8010:8010 \
|
||||
--restart unless-stopped \
|
||||
system-prompt-optimizer:allinone
|
||||
|
||||
# 查看启动日志
|
||||
docker logs -f system-prompt-optimizer
|
||||
```
|
||||
|
||||
**GPU 部署前提条件**:
|
||||
- 已安装 NVIDIA 驱动 (`nvidia-smi` 可用)
|
||||
- 已安装 NVIDIA Container Toolkit
|
||||
- GPU 显存 ≥ 10GB (14b 模型) 或 ≥ 6GB (8b 模型)
|
||||
|
||||
**详细 GPU 部署指南**: 参见 [GPU_DEPLOYMENT.md](GPU_DEPLOYMENT.md)
|
||||
|
||||
**重要**:
|
||||
- 首次启动需要等待 30-60 秒(CPU)或 10-20 秒(GPU),Ollama 服务需要初始化
|
||||
- GPU 模式下推理速度提升 5-10 倍
|
||||
- 端口 11434 (Ollama) 是可选的,仅在需要外部访问 Ollama 时暴露
|
||||
- 不暴露 11434 更安全,因为 Ollama API 没有身份验证
|
||||
|
||||
#### 步骤 8: 验证部署
|
||||
|
||||
@@ -225,7 +262,8 @@ docker run -d \
|
||||
|
||||
### 端口映射
|
||||
|
||||
- **8010**: Web 界面和 API 端口
|
||||
- **8010**: Web 界面和 API 端口(必需)
|
||||
- **11434**: Ollama API 端口(可选,仅用于调试或外部访问 Ollama)
|
||||
|
||||
### 数据持久化
|
||||
|
||||
@@ -233,6 +271,71 @@ docker run -d \
|
||||
|
||||
## 故障排查
|
||||
|
||||
### 0. Docker 守护进程连接错误
|
||||
|
||||
**问题**: 运行 `docker` 命令时提示 "Cannot connect to the Docker daemon"
|
||||
|
||||
**症状**:
|
||||
```
|
||||
Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?
|
||||
```
|
||||
|
||||
**解决方案**:
|
||||
|
||||
**方法 1: 检查 Docker 服务状态**
|
||||
```bash
|
||||
# 检查 Docker 是否运行
|
||||
sudo systemctl status docker
|
||||
|
||||
# 如果未运行,启动它
|
||||
sudo systemctl start docker
|
||||
|
||||
# 设置开机自启
|
||||
sudo systemctl enable docker
|
||||
```
|
||||
|
||||
**方法 2: 添加用户到 docker 组(推荐)**
|
||||
```bash
|
||||
# 将当前用户添加到 docker 组
|
||||
sudo usermod -aG docker $USER
|
||||
|
||||
# 应用组变更(需要重新登录或使用 newgrp)
|
||||
newgrp docker
|
||||
|
||||
# 或者直接注销并重新登录
|
||||
|
||||
# 验证
|
||||
docker info
|
||||
```
|
||||
|
||||
**方法 3: 修复 Docker socket 权限**
|
||||
```bash
|
||||
# 检查 socket 权限
|
||||
ls -l /var/run/docker.sock
|
||||
|
||||
# 修复权限
|
||||
sudo chown root:docker /var/run/docker.sock
|
||||
sudo chmod 660 /var/run/docker.sock
|
||||
```
|
||||
|
||||
**方法 4: 临时使用 sudo**
|
||||
```bash
|
||||
# 如果上述方法不可行,使用 sudo 运行 Docker 命令
|
||||
sudo docker load -i system-prompt-optimizer-allinone.tar
|
||||
sudo docker run -d --name system-prompt-optimizer ...
|
||||
```
|
||||
|
||||
**验证修复**:
|
||||
```bash
|
||||
# 应该能正常显示 Docker 信息
|
||||
docker info
|
||||
|
||||
# 应该能看到当前用户在 docker 组中
|
||||
groups | grep docker
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 1. 无法连接 Ollama 服务
|
||||
|
||||
**问题**: 容器内无法访问宿主机的 Ollama 服务
|
||||
|
||||
@@ -1,16 +1,20 @@
|
||||
FROM python:3.10-slim
|
||||
FROM --platform=linux/amd64 python:3.10-slim
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Install system dependencies including curl for Ollama
|
||||
# Install system dependencies
|
||||
RUN apt-get update && apt-get install -y \
|
||||
curl \
|
||||
ca-certificates \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install Ollama
|
||||
RUN curl -fsSL https://ollama.com/install.sh | sh
|
||||
# Install Ollama manually for amd64
|
||||
# Copy pre-downloaded Ollama binary to avoid slow downloads during build
|
||||
# Using v0.13.1 (latest stable as of Dec 2024)
|
||||
COPY ollama-linux-amd64.tgz /tmp/ollama-linux-amd64.tgz
|
||||
RUN tar -C /usr -xzf /tmp/ollama-linux-amd64.tgz \
|
||||
&& rm /tmp/ollama-linux-amd64.tgz
|
||||
|
||||
# Copy requirements file
|
||||
COPY requirements.txt .
|
||||
@@ -36,14 +40,18 @@ EXPOSE 8010 11434
|
||||
# Set environment variables
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
ENV OLLAMA_HOST=http://localhost:11434
|
||||
# Enable GPU support for Ollama (will auto-detect NVIDIA GPU if available)
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
|
||||
# Copy startup script
|
||||
COPY docker-entrypoint.sh /docker-entrypoint.sh
|
||||
RUN chmod +x /docker-entrypoint.sh
|
||||
|
||||
# Health check
|
||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=40s --retries=3 \
|
||||
CMD curl -f http://localhost:8010/health && curl -f http://localhost:11434/api/tags || exit 1
|
||||
# Only check the web application, not Ollama (internal service)
|
||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \
|
||||
CMD curl -f http://localhost:8010/health || exit 1
|
||||
|
||||
# Run the startup script
|
||||
ENTRYPOINT ["/docker-entrypoint.sh"]
|
||||
|
||||
141
build-8b.sh
Executable file
141
build-8b.sh
Executable file
@@ -0,0 +1,141 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Quick build script for qwen3:8b (lower memory usage)
|
||||
# Use this if your server has less than 12GB RAM
|
||||
|
||||
set -e
|
||||
|
||||
echo "=========================================="
|
||||
echo "Building with qwen3:8b (Lower Memory)"
|
||||
echo "=========================================="
|
||||
echo ""
|
||||
echo "Memory requirements:"
|
||||
echo " - qwen3:8b: ~5GB RAM"
|
||||
echo " - qwen3:14b: ~10GB RAM"
|
||||
echo ""
|
||||
|
||||
# Check if 8b model is available
|
||||
if ! ollama list | grep -q "qwen3:8b"; then
|
||||
echo "ERROR: qwen3:8b model not found!"
|
||||
echo ""
|
||||
echo "Please download it first:"
|
||||
echo " ollama pull qwen3:8b"
|
||||
echo ""
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Clean up
|
||||
echo "Cleaning up previous builds..."
|
||||
rm -rf ollama-models/
|
||||
docker rmi system-prompt-optimizer:allinone 2>/dev/null || true
|
||||
|
||||
# Export 8b model
|
||||
echo ""
|
||||
echo "Exporting qwen3:8b model..."
|
||||
mkdir -p ollama-models/models/{manifests/registry.ollama.ai/library,blobs}
|
||||
|
||||
# Function to get blob hashes from manifest
|
||||
get_blobs_from_manifest() {
|
||||
local manifest_file=$1
|
||||
grep -o 'sha256:[a-f0-9]\{64\}' "$manifest_file" | sed 's/sha256://' | sort -u
|
||||
}
|
||||
|
||||
# Function to copy model files
|
||||
copy_model() {
|
||||
local model_name=$1
|
||||
local model_tag=$2
|
||||
local manifest_dir="$HOME/.ollama/models/manifests/registry.ollama.ai/library/$model_name"
|
||||
|
||||
if [ ! -d "$manifest_dir" ]; then
|
||||
echo "ERROR: Model manifest not found: $manifest_dir"
|
||||
return 1
|
||||
fi
|
||||
|
||||
echo " Copying $model_name:$model_tag manifest..."
|
||||
mkdir -p "ollama-models/models/manifests/registry.ollama.ai/library/$model_name"
|
||||
|
||||
if [ -f "$manifest_dir/$model_tag" ]; then
|
||||
cp "$manifest_dir/$model_tag" "ollama-models/models/manifests/registry.ollama.ai/library/$model_name/"
|
||||
|
||||
echo " Finding blob files for $model_name:$model_tag..."
|
||||
local blob_hashes=$(get_blobs_from_manifest "$manifest_dir/$model_tag")
|
||||
local blob_count=0
|
||||
|
||||
for blob_hash in $blob_hashes; do
|
||||
local blob_file="$HOME/.ollama/models/blobs/sha256-$blob_hash"
|
||||
if [ -f "$blob_file" ]; then
|
||||
cp "$blob_file" "ollama-models/models/blobs/" 2>/dev/null
|
||||
blob_count=$((blob_count + 1))
|
||||
fi
|
||||
done
|
||||
|
||||
echo " ✓ $model_name:$model_tag copied ($blob_count blobs)"
|
||||
else
|
||||
echo "ERROR: Manifest file not found: $manifest_dir/$model_tag"
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
# Copy models
|
||||
copy_model "qwen3" "8b" || exit 1
|
||||
copy_model "qwen3-embedding" "4b" || exit 1
|
||||
|
||||
echo ""
|
||||
echo "✓ Models exported successfully"
|
||||
echo ""
|
||||
|
||||
# Update config.py to use 8b
|
||||
echo "Updating config.py to use qwen3:8b..."
|
||||
sed -i.bak 's/DEFAULT_CHAT_MODEL = "qwen3:14b"/DEFAULT_CHAT_MODEL = "qwen3:8b"/' config.py
|
||||
|
||||
# Update docker-entrypoint.sh to check for 8b
|
||||
echo "Updating docker-entrypoint.sh to check for qwen3:8b..."
|
||||
sed -i.bak 's/qwen3:14b/qwen3:8b/g' docker-entrypoint.sh
|
||||
|
||||
# Build image
|
||||
echo ""
|
||||
echo "Building Docker image..."
|
||||
docker build --platform linux/amd64 \
|
||||
-f Dockerfile.allinone \
|
||||
-t system-prompt-optimizer:allinone .
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo ""
|
||||
echo "Build failed!"
|
||||
# Restore backups
|
||||
mv config.py.bak config.py
|
||||
mv docker-entrypoint.sh.bak docker-entrypoint.sh
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Export image
|
||||
echo ""
|
||||
echo "Exporting Docker image..."
|
||||
docker save -o system-prompt-optimizer-allinone.tar system-prompt-optimizer:allinone
|
||||
|
||||
# Restore original files
|
||||
mv config.py.bak config.py
|
||||
mv docker-entrypoint.sh.bak docker-entrypoint.sh
|
||||
|
||||
echo ""
|
||||
echo "=========================================="
|
||||
echo "Build Complete!"
|
||||
echo "=========================================="
|
||||
ls -lh system-prompt-optimizer-allinone.tar
|
||||
echo ""
|
||||
echo "This image uses qwen3:8b (~5GB RAM required)"
|
||||
echo ""
|
||||
echo "Transfer to server and run:"
|
||||
echo ""
|
||||
echo " CPU mode:"
|
||||
echo " docker load -i system-prompt-optimizer-allinone.tar"
|
||||
echo " docker run -d -p 8010:8010 --restart unless-stopped system-prompt-optimizer:allinone"
|
||||
echo ""
|
||||
echo " GPU mode (recommended):"
|
||||
echo " docker load -i system-prompt-optimizer-allinone.tar"
|
||||
echo " docker run -d --gpus all -p 8010:8010 --restart unless-stopped system-prompt-optimizer:allinone"
|
||||
echo ""
|
||||
echo "Note: GPU mode provides 5-10x faster inference."
|
||||
echo " See GPU_DEPLOYMENT.md for GPU setup instructions."
|
||||
echo ""
|
||||
|
||||
@@ -15,12 +15,18 @@ echo "=========================================="
|
||||
echo ""
|
||||
echo "This will create a Docker image containing:"
|
||||
echo " - Python application"
|
||||
echo " - Ollama service"
|
||||
echo " - Ollama service (v0.13.1)"
|
||||
echo " - qwen3:14b model"
|
||||
echo " - qwen3-embedding:4b model"
|
||||
echo ""
|
||||
echo "Target platform: linux/amd64 (x86_64)"
|
||||
echo ""
|
||||
echo "WARNING: The final image will be 10-20GB in size!"
|
||||
echo ""
|
||||
echo "NOTE: If you're building on Apple Silicon (M1/M2/M3),"
|
||||
echo " Docker will use emulation which may be slower."
|
||||
echo " The image will still work on x86_64 servers."
|
||||
echo ""
|
||||
|
||||
# Check if ollama-models directory exists
|
||||
if [ ! -d "ollama-models" ]; then
|
||||
@@ -33,6 +39,19 @@ fi
|
||||
echo "✓ Found ollama-models directory"
|
||||
echo ""
|
||||
|
||||
# Check if Ollama binary exists
|
||||
if [ ! -f "ollama-linux-amd64.tgz" ]; then
|
||||
echo "ERROR: ollama-linux-amd64.tgz not found!"
|
||||
echo ""
|
||||
echo "Please download it first:"
|
||||
echo " curl -L -o ollama-linux-amd64.tgz https://github.com/ollama/ollama/releases/download/v0.13.1/ollama-linux-amd64.tgz"
|
||||
echo ""
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "✓ Found ollama-linux-amd64.tgz"
|
||||
echo ""
|
||||
|
||||
# Check disk space
|
||||
AVAILABLE_SPACE=$(df -h . | awk 'NR==2 {print $4}')
|
||||
echo "Available disk space: $AVAILABLE_SPACE"
|
||||
@@ -50,7 +69,12 @@ echo ""
|
||||
echo "=========================================="
|
||||
echo "Building Docker image..."
|
||||
echo "=========================================="
|
||||
docker build -f Dockerfile.allinone -t ${IMAGE_NAME}:${IMAGE_TAG} .
|
||||
echo "Platform: linux/amd64 (x86_64)"
|
||||
echo "This may take 20-40 minutes depending on your machine..."
|
||||
echo ""
|
||||
|
||||
# Build for amd64 platform explicitly
|
||||
docker build --platform linux/amd64 -f Dockerfile.allinone -t ${IMAGE_NAME}:${IMAGE_TAG} .
|
||||
|
||||
echo ""
|
||||
echo "=========================================="
|
||||
@@ -83,14 +107,25 @@ echo "2. On target server, load the image:"
|
||||
echo " docker load -i ${EXPORT_FILE}"
|
||||
echo ""
|
||||
echo "3. Run the container:"
|
||||
echo ""
|
||||
echo " CPU mode:"
|
||||
echo " docker run -d \\"
|
||||
echo " --name system-prompt-optimizer \\"
|
||||
echo " -p 8010:8010 \\"
|
||||
echo " -p 11434:11434 \\"
|
||||
echo " -v \$(pwd)/outputs:/app/outputs \\"
|
||||
echo " --restart unless-stopped \\"
|
||||
echo " ${IMAGE_NAME}:${IMAGE_TAG}"
|
||||
echo ""
|
||||
echo " GPU mode (recommended if NVIDIA GPU available):"
|
||||
echo " docker run -d \\"
|
||||
echo " --name system-prompt-optimizer \\"
|
||||
echo " --gpus all \\"
|
||||
echo " -p 8010:8010 \\"
|
||||
echo " --restart unless-stopped \\"
|
||||
echo " ${IMAGE_NAME}:${IMAGE_TAG}"
|
||||
echo ""
|
||||
echo " Note: Port 11434 (Ollama) is optional and only needed for debugging."
|
||||
echo " GPU mode provides 5-10x faster inference. See GPU_DEPLOYMENT.md for details."
|
||||
echo ""
|
||||
echo "4. Access the application:"
|
||||
echo " http://<server-ip>:8010/ui/opro.html"
|
||||
echo ""
|
||||
|
||||
@@ -2,34 +2,102 @@
|
||||
|
||||
set -e
|
||||
|
||||
echo "=========================================="
|
||||
echo "System Prompt Optimizer - Starting Up"
|
||||
echo "=========================================="
|
||||
echo ""
|
||||
|
||||
# Check if Ollama binary exists
|
||||
if ! command -v ollama &> /dev/null; then
|
||||
echo "ERROR: Ollama binary not found!"
|
||||
echo "Expected location: /usr/bin/ollama or /usr/local/bin/ollama"
|
||||
ls -la /usr/bin/ollama* 2>/dev/null || echo "No ollama in /usr/bin/"
|
||||
ls -la /usr/local/bin/ollama* 2>/dev/null || echo "No ollama in /usr/local/bin/"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "✓ Ollama binary found: $(which ollama)"
|
||||
echo ""
|
||||
|
||||
# Check if model files exist
|
||||
echo "Checking model files..."
|
||||
if [ ! -d "/root/.ollama/models" ]; then
|
||||
echo "ERROR: /root/.ollama/models directory not found!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
MANIFEST_COUNT=$(find /root/.ollama/models/manifests -type f 2>/dev/null | wc -l)
|
||||
BLOB_COUNT=$(find /root/.ollama/models/blobs -type f 2>/dev/null | wc -l)
|
||||
|
||||
echo "✓ Found $MANIFEST_COUNT manifest files"
|
||||
echo "✓ Found $BLOB_COUNT blob files"
|
||||
|
||||
if [ "$BLOB_COUNT" -lt 10 ]; then
|
||||
echo "WARNING: Very few blob files found. Models may not be complete."
|
||||
fi
|
||||
echo ""
|
||||
|
||||
echo "Starting Ollama service..."
|
||||
ollama serve &
|
||||
ollama serve > /tmp/ollama.log 2>&1 &
|
||||
OLLAMA_PID=$!
|
||||
|
||||
# Wait for Ollama to be ready
|
||||
echo "Waiting for Ollama to start..."
|
||||
for i in {1..30}; do
|
||||
OLLAMA_READY=false
|
||||
for i in {1..60}; do
|
||||
if curl -s http://localhost:11434/api/tags > /dev/null 2>&1; then
|
||||
echo "Ollama is ready!"
|
||||
OLLAMA_READY=true
|
||||
break
|
||||
fi
|
||||
echo "Waiting for Ollama... ($i/30)"
|
||||
sleep 2
|
||||
echo "Waiting for Ollama... ($i/60)"
|
||||
sleep 3
|
||||
done
|
||||
|
||||
if [ "$OLLAMA_READY" = false ]; then
|
||||
echo ""
|
||||
echo "ERROR: Ollama failed to start within 3 minutes!"
|
||||
echo ""
|
||||
echo "Ollama logs:"
|
||||
cat /tmp/ollama.log
|
||||
echo ""
|
||||
echo "Check full logs with: docker logs system-prompt-optimizer"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Check if models exist, if not, show warning
|
||||
echo ""
|
||||
echo "Checking for models..."
|
||||
ollama list
|
||||
|
||||
echo ""
|
||||
if ! ollama list | grep -q "qwen3:14b"; then
|
||||
echo "WARNING: qwen3:14b model not found!"
|
||||
echo "ERROR: qwen3:14b model not found!"
|
||||
echo "The application requires qwen3:14b to function properly."
|
||||
echo ""
|
||||
echo "Available models:"
|
||||
ollama list
|
||||
echo ""
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! ollama list | grep -q "qwen3-embedding"; then
|
||||
echo "WARNING: qwen3-embedding model not found!"
|
||||
echo "The application requires qwen3-embedding:4b for embeddings."
|
||||
echo "Continuing anyway, but embeddings may not work."
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "✓ All required models are available"
|
||||
echo ""
|
||||
echo "=========================================="
|
||||
echo "Starting FastAPI application..."
|
||||
echo "=========================================="
|
||||
echo "Application will be available at:"
|
||||
echo " - Web UI: http://localhost:8010/ui/opro.html"
|
||||
echo " - API Docs: http://localhost:8010/docs"
|
||||
echo " - Ollama: http://localhost:11434"
|
||||
echo ""
|
||||
|
||||
exec uvicorn _qwen_xinference_demo.api:app --host 0.0.0.0 --port 8010
|
||||
|
||||
|
||||
@@ -56,28 +56,73 @@ if [ ! -d "$OLLAMA_MODELS_PATH" ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Create export directory
|
||||
# Create export directory structure
|
||||
echo ""
|
||||
echo "Creating export directory: $MODELS_DIR"
|
||||
rm -rf "$MODELS_DIR"
|
||||
mkdir -p "$MODELS_DIR"
|
||||
mkdir -p "$MODELS_DIR/models/manifests/registry.ollama.ai/library"
|
||||
mkdir -p "$MODELS_DIR/models/blobs"
|
||||
|
||||
echo ""
|
||||
echo "Copying Ollama data from $OLLAMA_MODELS_PATH to $MODELS_DIR..."
|
||||
echo "Copying only required models (qwen3:14b and qwen3-embedding:4b)..."
|
||||
echo "This may take several minutes (models are large)..."
|
||||
|
||||
# Copy the entire .ollama directory structure
|
||||
cp -r "$OLLAMA_MODELS_PATH"/* "$MODELS_DIR/"
|
||||
# Function to get blob hashes from manifest
|
||||
get_blobs_from_manifest() {
|
||||
local manifest_file=$1
|
||||
# Extract all sha256 hashes from the manifest JSON
|
||||
grep -oE 'sha256:[a-f0-9]{64}' "$manifest_file" 2>/dev/null | sed 's/sha256://' | sort -u
|
||||
}
|
||||
|
||||
# Function to copy model files
|
||||
copy_model() {
|
||||
local model_name=$1
|
||||
local model_tag=$2
|
||||
local manifest_dir="$OLLAMA_MODELS_PATH/models/manifests/registry.ollama.ai/library/$model_name"
|
||||
|
||||
if [ ! -d "$manifest_dir" ]; then
|
||||
echo "ERROR: Model manifest not found: $manifest_dir"
|
||||
return 1
|
||||
fi
|
||||
|
||||
echo " Copying $model_name:$model_tag manifest..."
|
||||
mkdir -p "$MODELS_DIR/models/manifests/registry.ollama.ai/library/$model_name"
|
||||
|
||||
# Copy the specific tag manifest
|
||||
if [ -f "$manifest_dir/$model_tag" ]; then
|
||||
cp "$manifest_dir/$model_tag" "$MODELS_DIR/models/manifests/registry.ollama.ai/library/$model_name/"
|
||||
|
||||
# Get all blob hashes referenced in this manifest
|
||||
echo " Finding blob files for $model_name:$model_tag..."
|
||||
local blob_hashes=$(get_blobs_from_manifest "$manifest_dir/$model_tag")
|
||||
local blob_count=0
|
||||
|
||||
for blob_hash in $blob_hashes; do
|
||||
local blob_file="$OLLAMA_MODELS_PATH/models/blobs/sha256-$blob_hash"
|
||||
if [ -f "$blob_file" ]; then
|
||||
cp "$blob_file" "$MODELS_DIR/models/blobs/" 2>/dev/null
|
||||
blob_count=$((blob_count + 1))
|
||||
fi
|
||||
done
|
||||
|
||||
echo " ✓ $model_name:$model_tag copied ($blob_count blobs)"
|
||||
else
|
||||
echo "ERROR: Manifest file not found: $manifest_dir/$model_tag"
|
||||
return 1
|
||||
fi
|
||||
}
|
||||
|
||||
# Copy required models with specific tags
|
||||
copy_model "qwen3" "14b" || exit 1
|
||||
copy_model "qwen3-embedding" "4b" || exit 1
|
||||
|
||||
echo ""
|
||||
echo "=========================================="
|
||||
echo "Models exported successfully!"
|
||||
echo "=========================================="
|
||||
du -sh "$MODELS_DIR"
|
||||
|
||||
echo ""
|
||||
echo "Directory structure:"
|
||||
ls -lh "$MODELS_DIR/"
|
||||
echo "Total size:"
|
||||
du -sh "$MODELS_DIR"
|
||||
|
||||
echo ""
|
||||
echo "Models included:"
|
||||
@@ -85,6 +130,24 @@ if [ -d "$MODELS_DIR/models/manifests/registry.ollama.ai/library" ]; then
|
||||
ls -lh "$MODELS_DIR/models/manifests/registry.ollama.ai/library/"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "Blob files:"
|
||||
if [ -d "$MODELS_DIR/models/blobs" ]; then
|
||||
echo " Total blobs: $(ls -1 "$MODELS_DIR/models/blobs" | wc -l)"
|
||||
du -sh "$MODELS_DIR/models/blobs"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "=========================================="
|
||||
echo "Summary"
|
||||
echo "=========================================="
|
||||
echo "✓ Only qwen3:14b and qwen3-embedding:4b were exported"
|
||||
echo ""
|
||||
echo "Models in your Ollama that were NOT copied:"
|
||||
ollama list | grep -v "qwen3:14b" | grep -v "qwen3-embedding:4b" | tail -n +2 || echo " (none)"
|
||||
echo ""
|
||||
echo "This keeps the Docker image size minimal!"
|
||||
|
||||
echo ""
|
||||
echo "=========================================="
|
||||
echo "Next steps:"
|
||||
|
||||
Reference in New Issue
Block a user