from typing import List, Tuple # ============================================================================ # OLD FUNCTIONS (Query Rewriting - NOT true OPRO, kept for compatibility) # ============================================================================ def refine_instruction(query: str) -> str: """ LEGACY: Generates query rewrites (NOT true OPRO). This is query expansion, not system instruction optimization. """ return f""" 你是一个“问题澄清与重写助手”。 请根据用户的原始问题: 【{query}】 生成不少于20条多角度、可直接执行的问题改写,每行一条。 """ def refine_instruction_with_history(query: str, rejected_list: list) -> str: """ LEGACY: Generates query rewrites with rejection history (NOT true OPRO). """ rejected_text = "\n".join(f"- {r}" for r in rejected_list) if rejected_list else "" return f""" 你是一个“问题澄清与重写助手”。 原始问题: {query} 以下改写已被否定: {rejected_text} 请从新的角度重新生成至少20条不同的改写问题,每条单独一行。 """ # ============================================================================ # TRUE OPRO FUNCTIONS (System Instruction Optimization) # ============================================================================ def generate_initial_system_instruction_candidates(task_description: str, pool_size: int = None) -> str: """ TRUE OPRO: Generates initial candidate System Instructions for a new OPRO run. Args: task_description: Description of the task the LLM should perform pool_size: Number of candidates to generate (defaults to config.GENERATION_POOL_SIZE) Returns: Meta-prompt that instructs the optimizer LLM to generate system instruction candidates """ import config pool_size = pool_size or config.GENERATION_POOL_SIZE return f""" 你是一个"系统指令生成助手"。 目标任务描述: 【{task_description}】 请根据以上任务,生成 {pool_size} 条高质量、风格各异的"System Instruction"候选指令。 要求: 1. 每条指令必须有明显不同的风格和侧重点 2. 覆盖不同的实现策略(例如:简洁型、详细型、示例型、角色扮演型、步骤型等) 3. 这些指令应指导LLM的行为和输出格式,以最大化任务性能 4. 每条指令单独成行,不包含编号或额外说明 5. 所有生成的指令必须使用简体中文 生成 {pool_size} 条指令: """ def generate_optimized_system_instruction( task_description: str, trajectory: List[Tuple[str, float]], pool_size: int = None ) -> str: """ TRUE OPRO: Analyzes performance trajectory and generates optimized System Instructions. This is the core OPRO function that uses an LLM as an optimizer to improve system instructions based on historical performance scores. Args: task_description: Description of the task the LLM should perform trajectory: List of (instruction, score) tuples, sorted by score (highest first) pool_size: Number of candidates to generate (defaults to config.GENERATION_POOL_SIZE) Returns: Meta-prompt that instructs the optimizer LLM to generate better system instructions """ import config pool_size = pool_size or config.GENERATION_POOL_SIZE if not trajectory: # If no trajectory, fall back to initial generation return generate_initial_system_instruction_candidates(task_description, pool_size) # Format the trajectory for the Optimizer LLM formatted_history = "\n".join( f"--- Instruction Score: {score:.4f}\n{instruction}" for instruction, score in trajectory ) # Determine the current highest score to set the optimization goal highest_score = max(score for _, score in trajectory) # Construct the Meta-Prompt (The OPRO Instruction) return f""" 你是一个"System Prompt 优化器"。 你的任务是改进一个LLM的系统指令,以最大化其在以下任务中的性能: 【{task_description}】 --- **历史性能轨迹 (Instructions and Scores):** {formatted_history} --- **当前最高得分: {highest_score:.4f}** 请分析得分最高的指令的特点和得分最低指令的缺陷。 然后,生成 {pool_size} 条新的、有潜力超越 {highest_score:.4f} 分的System Instruction。 要求: 1. 每条指令必须有明显不同的改进策略 2. 结合高分指令的优点,避免低分指令的缺陷 3. 探索新的优化方向和表达方式 4. 每条指令单独成行,不包含编号或额外说明 5. 所有生成的指令必须使用简体中文 生成 {pool_size} 条优化后的指令: """