Major additions: - All-in-One Docker image with Ollama + models bundled - Separate deployment option for existing Ollama installations - Changed default model from qwen3:8b to qwen3:14b - Comprehensive deployment documentation Files added: - Dockerfile: Basic app-only image - Dockerfile.allinone: Complete image with Ollama + models - docker-compose.yml: Easy deployment configuration - docker-entrypoint.sh: Startup script for all-in-one image - requirements.txt: Python dependencies - .dockerignore: Exclude unnecessary files from image Scripts: - export-ollama-models.sh: Export models from local Ollama - build-allinone.sh: Build complete offline-deployable image - build-and-export.sh: Build and export basic image Documentation: - DEPLOYMENT.md: Comprehensive deployment guide - QUICK_START.md: Quick reference for common tasks Configuration: - Updated config.py: DEFAULT_CHAT_MODEL = qwen3:14b - Updated frontend/opro.html: Page title to 系统提示词优化
118 lines
2.2 KiB
Markdown
118 lines
2.2 KiB
Markdown
# 快速开始指南
|
||
|
||
## 离线部署(All-in-One 方案)
|
||
|
||
### 在开发机器上(有外网)
|
||
|
||
```bash
|
||
# 1. 下载模型
|
||
ollama pull qwen3:14b
|
||
ollama pull qwen3-embedding:4b
|
||
|
||
# 2. 导出模型
|
||
./export-ollama-models.sh
|
||
|
||
# 3. 构建并导出 Docker 镜像
|
||
./build-allinone.sh
|
||
|
||
# 4. 传输到目标服务器
|
||
# 文件: system-prompt-optimizer-allinone.tar (约 10-20GB)
|
||
scp system-prompt-optimizer-allinone.tar user@server:/path/
|
||
```
|
||
|
||
### 在目标服务器上(无外网)
|
||
|
||
```bash
|
||
# 1. 加载镜像
|
||
docker load -i system-prompt-optimizer-allinone.tar
|
||
|
||
# 2. 启动服务
|
||
docker run -d \
|
||
--name system-prompt-optimizer \
|
||
-p 8010:8010 \
|
||
-p 11434:11434 \
|
||
-v $(pwd)/outputs:/app/outputs \
|
||
--restart unless-stopped \
|
||
system-prompt-optimizer:allinone
|
||
|
||
# 3. 等待启动(约 60 秒)
|
||
sleep 60
|
||
|
||
# 4. 验证
|
||
curl http://localhost:8010/health
|
||
curl http://localhost:11434/api/tags
|
||
|
||
# 5. 访问界面
|
||
# http://<服务器IP>:8010/ui/opro.html
|
||
```
|
||
|
||
## 常用命令
|
||
|
||
```bash
|
||
# 查看日志
|
||
docker logs -f system-prompt-optimizer
|
||
|
||
# 重启服务
|
||
docker restart system-prompt-optimizer
|
||
|
||
# 停止服务
|
||
docker stop system-prompt-optimizer
|
||
|
||
# 删除容器
|
||
docker rm -f system-prompt-optimizer
|
||
|
||
# 进入容器
|
||
docker exec -it system-prompt-optimizer bash
|
||
|
||
# 检查模型
|
||
docker exec -it system-prompt-optimizer ollama list
|
||
```
|
||
|
||
## 端口说明
|
||
|
||
- **8010**: Web 界面和 API
|
||
- **11434**: Ollama 服务(仅 All-in-One 方案需要暴露)
|
||
|
||
## 文件说明
|
||
|
||
- `system-prompt-optimizer-allinone.tar`: 完整镜像(10-20GB)
|
||
- `outputs/`: 用户反馈日志目录
|
||
|
||
## 故障排查
|
||
|
||
### 服务无法启动
|
||
|
||
```bash
|
||
# 查看日志
|
||
docker logs system-prompt-optimizer
|
||
|
||
# 检查端口占用
|
||
netstat -tulpn | grep 8010
|
||
netstat -tulpn | grep 11434
|
||
```
|
||
|
||
### 模型不可用
|
||
|
||
```bash
|
||
# 进入容器检查
|
||
docker exec -it system-prompt-optimizer ollama list
|
||
|
||
# 应该看到:
|
||
# qwen3:14b
|
||
# qwen3-embedding:4b
|
||
```
|
||
|
||
### 性能慢
|
||
|
||
- 确保服务器有足够的 RAM(建议 16GB+)
|
||
- 如果有 GPU,使用支持 GPU 的 Docker 运行时
|
||
- 调整 `config.py` 中的 `GENERATION_POOL_SIZE`
|
||
|
||
## 更多信息
|
||
|
||
详细文档请参考:
|
||
- `DEPLOYMENT.md`: 完整部署指南
|
||
- `README.md`: 项目说明
|
||
- http://localhost:8010/docs: API 文档
|
||
|