- Add true OPRO system instruction optimization (vs query rewriting) - Implement iterative optimization with performance trajectory - Add new OPRO API endpoints (/opro/create, /opro/generate_and_evaluate, /opro/execute) - Create modern Gemini-style chat UI (frontend/opro.html) - Optimize performance: reduce candidates from 20 to 10 (2x faster) - Add model selector in UI toolbar - Add collapsible sidebar with session management - Add copy button for instructions - Ensure all generated prompts use simplified Chinese - Update README with comprehensive documentation - Add .gitignore for local_docs folder
641 lines
21 KiB
Python
641 lines
21 KiB
Python
from fastapi import FastAPI, HTTPException, Request
|
||
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
|
||
from fastapi.staticfiles import StaticFiles
|
||
from pydantic import BaseModel
|
||
from typing import List, Tuple, Optional
|
||
import config
|
||
|
||
# Legacy session management (query rewriting)
|
||
from .opro.session_state import create_session, get_session, update_session_add_candidates, log_user_choice
|
||
from .opro.session_state import log_user_reject
|
||
from .opro.session_state import set_selected_prompt, log_chat_message
|
||
from .opro.session_state import set_session_model
|
||
from .opro.session_state import USER_FEEDBACK_LOG
|
||
|
||
# True OPRO session management
|
||
from .opro.session_state import (
|
||
create_opro_run, get_opro_run, update_opro_iteration,
|
||
add_opro_evaluation, get_opro_trajectory, set_opro_test_cases,
|
||
complete_opro_run, list_opro_runs
|
||
)
|
||
|
||
# Optimization functions
|
||
from .opro.user_prompt_optimizer import generate_candidates
|
||
from .opro.user_prompt_optimizer import (
|
||
generate_system_instruction_candidates,
|
||
evaluate_system_instruction
|
||
)
|
||
|
||
from .opro.ollama_client import call_qwen
|
||
from .opro.ollama_client import list_models
|
||
|
||
from fastapi.middleware.cors import CORSMiddleware
|
||
|
||
app = FastAPI(
|
||
title=config.APP_TITLE,
|
||
description=config.APP_DESCRIPTION,
|
||
version=config.APP_VERSION,
|
||
contact=config.APP_CONTACT,
|
||
openapi_tags=[
|
||
{"name": "health", "description": "健康检查"},
|
||
{"name": "models", "description": "模型列表与设置"},
|
||
{"name": "sessions", "description": "会话管理(旧版查询重写)"},
|
||
{"name": "opro-legacy", "description": "旧版提示优化(查询重写)"},
|
||
{"name": "opro-true", "description": "真正的OPRO(系统指令优化)"},
|
||
{"name": "chat", "description": "会话聊天"},
|
||
{"name": "ui", "description": "静态页面"}
|
||
]
|
||
)
|
||
app.add_middleware(
|
||
CORSMiddleware,
|
||
allow_origins=["*"],
|
||
allow_credentials=True,
|
||
allow_methods=["*"],
|
||
allow_headers=["*"],
|
||
)
|
||
MAX_ROUNDS = 3
|
||
|
||
def ok(data=None):
|
||
return JSONResponse({"success": True, "data": data})
|
||
|
||
class AppException(HTTPException):
|
||
def __init__(self, status_code: int, detail: str, error_code: str):
|
||
super().__init__(status_code=status_code, detail=detail)
|
||
self.error_code = error_code
|
||
|
||
@app.exception_handler(AppException)
|
||
def _app_exc_handler(request: Request, exc: AppException):
|
||
return JSONResponse(status_code=exc.status_code, content={
|
||
"success": False,
|
||
"error": str(exc.detail),
|
||
"error_code": exc.error_code
|
||
})
|
||
|
||
@app.exception_handler(HTTPException)
|
||
def _http_exc_handler(request: Request, exc: HTTPException):
|
||
return JSONResponse(status_code=exc.status_code, content={
|
||
"success": False,
|
||
"error": str(exc.detail),
|
||
"error_code": "HTTP_ERROR"
|
||
})
|
||
|
||
@app.exception_handler(Exception)
|
||
def _generic_exc_handler(request: Request, exc: Exception):
|
||
return JSONResponse(status_code=500, content={
|
||
"success": False,
|
||
"error": "internal error",
|
||
"error_code": "INTERNAL_ERROR"
|
||
})
|
||
|
||
class StartReq(BaseModel):
|
||
query: str
|
||
|
||
class NextReq(BaseModel):
|
||
session_id: str
|
||
|
||
class SelectReq(BaseModel):
|
||
session_id: str
|
||
choice: str
|
||
|
||
class RejectReq(BaseModel):
|
||
session_id: str
|
||
candidate: str
|
||
reason: str | None = None
|
||
|
||
class SetModelReq(BaseModel):
|
||
session_id: str
|
||
model_name: str
|
||
|
||
|
||
# ============================================================================
|
||
# TRUE OPRO REQUEST MODELS
|
||
# ============================================================================
|
||
|
||
class TestCase(BaseModel):
|
||
"""A single test case for OPRO evaluation."""
|
||
input: str
|
||
expected_output: str
|
||
|
||
|
||
class CreateOPRORunReq(BaseModel):
|
||
"""Request to create a new OPRO optimization run."""
|
||
task_description: str
|
||
test_cases: Optional[List[TestCase]] = None
|
||
model_name: Optional[str] = None
|
||
|
||
|
||
class OPROIterateReq(BaseModel):
|
||
"""Request to run one OPRO iteration."""
|
||
run_id: str
|
||
top_k: Optional[int] = None
|
||
|
||
|
||
class OPROEvaluateReq(BaseModel):
|
||
"""Request to evaluate a system instruction."""
|
||
run_id: str
|
||
instruction: str
|
||
|
||
|
||
class OPROAddTestCasesReq(BaseModel):
|
||
"""Request to add test cases to an OPRO run."""
|
||
run_id: str
|
||
test_cases: List[TestCase]
|
||
|
||
|
||
class OPROGenerateAndEvaluateReq(BaseModel):
|
||
"""Request to generate and auto-evaluate candidates (for chat-like UX)."""
|
||
run_id: str
|
||
top_k: Optional[int] = None
|
||
pool_size: Optional[int] = None
|
||
auto_evaluate: Optional[bool] = True # If False, use diversity-based selection only
|
||
|
||
|
||
class OPROExecuteReq(BaseModel):
|
||
"""Request to execute a system instruction with user input."""
|
||
instruction: str
|
||
user_input: str
|
||
model_name: Optional[str] = None
|
||
|
||
|
||
# ============================================================================
|
||
# LEGACY ENDPOINTS (Query Rewriting - NOT true OPRO)
|
||
# ============================================================================
|
||
|
||
@app.post("/start", tags=["opro-legacy"])
|
||
def start(req: StartReq):
|
||
sid = create_session(req.query)
|
||
cands = generate_candidates(req.query, [], model_name=get_session(sid).get("model_name"))
|
||
update_session_add_candidates(sid, cands)
|
||
return ok({"session_id": sid, "round": 0, "candidates": cands})
|
||
|
||
@app.post("/next", tags=["opro-legacy"])
|
||
def next_round(req: NextReq):
|
||
s = get_session(req.session_id)
|
||
if not s:
|
||
raise AppException(404, "session not found", "SESSION_NOT_FOUND")
|
||
|
||
if s["round"] >= MAX_ROUNDS:
|
||
ans = call_qwen(s["original_query"], temperature=0.3, max_tokens=512)
|
||
return ok({"final": True, "answer": ans})
|
||
|
||
cands = generate_candidates(s["original_query"], s["history_candidates"], model_name=s.get("model_name"))
|
||
update_session_add_candidates(req.session_id, cands)
|
||
return ok({"session_id": req.session_id, "round": s["round"], "candidates": cands})
|
||
|
||
@app.post("/select", tags=["opro-legacy"])
|
||
def select(req: SelectReq):
|
||
s = get_session(req.session_id)
|
||
if not s:
|
||
raise AppException(404, "session not found", "SESSION_NOT_FOUND")
|
||
|
||
log_user_choice(req.session_id, req.choice)
|
||
set_selected_prompt(req.session_id, req.choice)
|
||
log_chat_message(req.session_id, "system", req.choice)
|
||
try:
|
||
ans = call_qwen(req.choice, temperature=0.2, max_tokens=1024, model_name=s.get("model_name"))
|
||
except Exception as e:
|
||
raise AppException(400, f"ollama error: {e}", "OLLAMA_ERROR")
|
||
log_chat_message(req.session_id, "assistant", ans)
|
||
try:
|
||
import os, json
|
||
os.makedirs("outputs", exist_ok=True)
|
||
with open("outputs/user_feedback.jsonl", "a", encoding="utf-8") as f:
|
||
f.write(json.dumps({
|
||
"session_id": req.session_id,
|
||
"round": s["round"],
|
||
"choice": req.choice,
|
||
"answer": ans
|
||
}, ensure_ascii=False) + "\n")
|
||
except Exception:
|
||
pass
|
||
return ok({"prompt": req.choice, "answer": ans})
|
||
|
||
@app.post("/reject", tags=["opro-legacy"])
|
||
def reject(req: RejectReq):
|
||
s = get_session(req.session_id)
|
||
if not s:
|
||
raise AppException(404, "session not found", "SESSION_NOT_FOUND")
|
||
log_user_reject(req.session_id, req.candidate, req.reason)
|
||
cands = generate_candidates(s["original_query"], s["history_candidates"] + [req.candidate], model_name=s.get("model_name"))
|
||
update_session_add_candidates(req.session_id, cands)
|
||
return ok({"session_id": req.session_id, "round": s["round"], "candidates": cands})
|
||
class QueryReq(BaseModel):
|
||
query: str
|
||
session_id: str | None = None
|
||
|
||
@app.post("/query", tags=["opro-legacy"])
|
||
def query(req: QueryReq):
|
||
if req.session_id:
|
||
s = get_session(req.session_id)
|
||
if not s:
|
||
raise AppException(404, "session not found", "SESSION_NOT_FOUND")
|
||
cands = generate_candidates(s["original_query"], s["history_candidates"], model_name=s.get("model_name"))
|
||
update_session_add_candidates(req.session_id, cands)
|
||
return ok({"session_id": req.session_id, "round": s["round"], "candidates": cands})
|
||
else:
|
||
sid = create_session(req.query)
|
||
log_chat_message(sid, "user", req.query)
|
||
cands = generate_candidates(req.query, [], model_name=get_session(sid).get("model_name"))
|
||
update_session_add_candidates(sid, cands)
|
||
return ok({"session_id": sid, "round": 0, "candidates": cands})
|
||
app.mount("/ui", StaticFiles(directory="frontend", html=True), name="static")
|
||
|
||
@app.get("/", tags=["ui"])
|
||
def root():
|
||
return RedirectResponse(url="/ui/")
|
||
|
||
@app.get("/health", tags=["health"])
|
||
def health():
|
||
return ok({"status": "ok", "version": config.APP_VERSION})
|
||
|
||
@app.get("/version", tags=["health"])
|
||
def version():
|
||
return ok({"version": config.APP_VERSION})
|
||
|
||
# @app.get("/ui/react", tags=["ui"])
|
||
# def ui_react():
|
||
# return FileResponse("frontend/react/index.html")
|
||
|
||
# @app.get("/ui/offline", tags=["ui"])
|
||
# def ui_offline():
|
||
# return FileResponse("frontend/ui_offline.html")
|
||
|
||
@app.get("/react", tags=["ui"])
|
||
def react_root():
|
||
return FileResponse("frontend/react/index.html")
|
||
|
||
@app.get("/sessions", tags=["sessions"])
|
||
def sessions():
|
||
from .opro.session_state import SESSIONS
|
||
return ok({"sessions": [{
|
||
"session_id": sid,
|
||
"round": s.get("round", 0),
|
||
"selected_prompt": s.get("selected_prompt"),
|
||
"original_query": s.get("original_query")
|
||
} for sid, s in SESSIONS.items()]})
|
||
|
||
@app.get("/session/{sid}", tags=["sessions"])
|
||
def session_detail(sid: str):
|
||
s = get_session(sid)
|
||
if not s:
|
||
raise AppException(404, "session not found", "SESSION_NOT_FOUND")
|
||
return ok({
|
||
"session_id": sid,
|
||
"round": s["round"],
|
||
"original_query": s["original_query"],
|
||
"selected_prompt": s["selected_prompt"],
|
||
"candidates": s["history_candidates"],
|
||
"user_feedback": s["user_feedback"],
|
||
"rejected": s["rejected"],
|
||
"history": s["chat_history"],
|
||
})
|
||
|
||
class MessageReq(BaseModel):
|
||
session_id: str
|
||
message: str
|
||
|
||
@app.post("/message", tags=["chat"])
|
||
def message(req: MessageReq):
|
||
s = get_session(req.session_id)
|
||
if not s:
|
||
raise AppException(404, "session not found", "SESSION_NOT_FOUND")
|
||
log_chat_message(req.session_id, "user", req.message)
|
||
base_prompt = s.get("selected_prompt") or s["original_query"]
|
||
full_prompt = base_prompt + "\n\n" + req.message
|
||
try:
|
||
ans = call_qwen(full_prompt, temperature=0.3, max_tokens=1024, model_name=s.get("model_name"))
|
||
except Exception as e:
|
||
raise AppException(400, f"ollama error: {e}", "OLLAMA_ERROR")
|
||
log_chat_message(req.session_id, "assistant", ans)
|
||
return ok({"session_id": req.session_id, "answer": ans, "history": s["chat_history"]})
|
||
|
||
class QueryFromMsgReq(BaseModel):
|
||
session_id: str
|
||
|
||
@app.post("/query_from_message", tags=["opro-legacy"])
|
||
def query_from_message(req: QueryFromMsgReq):
|
||
s = get_session(req.session_id)
|
||
if not s:
|
||
raise AppException(404, "session not found", "SESSION_NOT_FOUND")
|
||
last_user = None
|
||
for m in reversed(s.get("chat_history", [])):
|
||
if m.get("role") == "user" and m.get("content"):
|
||
last_user = m["content"]
|
||
break
|
||
base = last_user or s["original_query"]
|
||
cands = generate_candidates(base, s["history_candidates"], model_name=s.get("model_name"))
|
||
update_session_add_candidates(req.session_id, cands)
|
||
return ok({"session_id": req.session_id, "round": s["round"], "candidates": cands})
|
||
|
||
class AnswerReq(BaseModel):
|
||
query: str
|
||
|
||
@app.post("/answer", tags=["opro-legacy"])
|
||
def answer(req: AnswerReq):
|
||
sid = create_session(req.query)
|
||
log_chat_message(sid, "user", req.query)
|
||
ans = call_qwen(req.query, temperature=0.2, max_tokens=1024)
|
||
log_chat_message(sid, "assistant", ans)
|
||
cands = generate_candidates(req.query, [])
|
||
update_session_add_candidates(sid, cands)
|
||
return ok({"session_id": sid, "answer": ans, "candidates": cands})
|
||
|
||
@app.get("/models", tags=["models"])
|
||
def models():
|
||
return ok({"models": list_models()})
|
||
|
||
@app.post("/set_model", tags=["models"])
|
||
def set_model(req: SetModelReq):
|
||
s = get_session(req.session_id)
|
||
if not s:
|
||
raise AppException(404, "session not found", "SESSION_NOT_FOUND")
|
||
avail = set(list_models() or [])
|
||
if req.model_name not in avail:
|
||
raise AppException(400, f"model not available: {req.model_name}", "MODEL_NOT_AVAILABLE")
|
||
set_session_model(req.session_id, req.model_name)
|
||
return ok({"session_id": req.session_id, "model_name": req.model_name})
|
||
|
||
|
||
# ============================================================================
|
||
# TRUE OPRO ENDPOINTS (System Instruction Optimization)
|
||
# ============================================================================
|
||
|
||
@app.post("/opro/create", tags=["opro-true"])
|
||
def opro_create_run(req: CreateOPRORunReq):
|
||
"""
|
||
Create a new OPRO optimization run.
|
||
|
||
This starts a new system instruction optimization process for a given task.
|
||
"""
|
||
# Convert test cases from Pydantic models to tuples
|
||
test_cases = None
|
||
if req.test_cases:
|
||
test_cases = [(tc.input, tc.expected_output) for tc in req.test_cases]
|
||
|
||
run_id = create_opro_run(
|
||
task_description=req.task_description,
|
||
test_cases=test_cases,
|
||
model_name=req.model_name
|
||
)
|
||
|
||
run = get_opro_run(run_id)
|
||
|
||
return ok({
|
||
"run_id": run_id,
|
||
"task_description": run["task_description"],
|
||
"num_test_cases": len(run["test_cases"]),
|
||
"iteration": run["iteration"],
|
||
"status": run["status"]
|
||
})
|
||
|
||
|
||
@app.post("/opro/iterate", tags=["opro-true"])
|
||
def opro_iterate(req: OPROIterateReq):
|
||
"""
|
||
Run one OPRO iteration: generate new system instruction candidates.
|
||
|
||
This generates optimized system instructions based on the performance trajectory.
|
||
"""
|
||
run = get_opro_run(req.run_id)
|
||
if not run:
|
||
raise AppException(404, "OPRO run not found", "RUN_NOT_FOUND")
|
||
|
||
# Get trajectory for optimization
|
||
trajectory = get_opro_trajectory(req.run_id)
|
||
|
||
# Generate candidates
|
||
top_k = req.top_k or config.TOP_K
|
||
try:
|
||
candidates = generate_system_instruction_candidates(
|
||
task_description=run["task_description"],
|
||
trajectory=trajectory if trajectory else None,
|
||
top_k=top_k,
|
||
model_name=run["model_name"]
|
||
)
|
||
except Exception as e:
|
||
raise AppException(500, f"Failed to generate candidates: {e}", "GENERATION_ERROR")
|
||
|
||
# Update run with new candidates
|
||
update_opro_iteration(req.run_id, candidates)
|
||
|
||
return ok({
|
||
"run_id": req.run_id,
|
||
"iteration": run["iteration"] + 1,
|
||
"candidates": candidates,
|
||
"num_candidates": len(candidates),
|
||
"best_score": run["best_score"]
|
||
})
|
||
|
||
|
||
@app.post("/opro/evaluate", tags=["opro-true"])
|
||
def opro_evaluate(req: OPROEvaluateReq):
|
||
"""
|
||
Evaluate a system instruction on the test cases.
|
||
|
||
This scores the instruction and updates the performance trajectory.
|
||
"""
|
||
run = get_opro_run(req.run_id)
|
||
if not run:
|
||
raise AppException(404, "OPRO run not found", "RUN_NOT_FOUND")
|
||
|
||
if not run["test_cases"]:
|
||
raise AppException(400, "No test cases defined for this run", "NO_TEST_CASES")
|
||
|
||
# Evaluate the instruction
|
||
try:
|
||
score = evaluate_system_instruction(
|
||
system_instruction=req.instruction,
|
||
test_cases=run["test_cases"],
|
||
model_name=run["model_name"]
|
||
)
|
||
except Exception as e:
|
||
raise AppException(500, f"Evaluation failed: {e}", "EVALUATION_ERROR")
|
||
|
||
# Add to trajectory
|
||
add_opro_evaluation(req.run_id, req.instruction, score)
|
||
|
||
# Get updated run info
|
||
run = get_opro_run(req.run_id)
|
||
|
||
return ok({
|
||
"run_id": req.run_id,
|
||
"instruction": req.instruction,
|
||
"score": score,
|
||
"best_score": run["best_score"],
|
||
"is_new_best": score == run["best_score"] and score > 0
|
||
})
|
||
|
||
|
||
@app.get("/opro/runs", tags=["opro-true"])
|
||
def opro_list_runs():
|
||
"""
|
||
List all OPRO optimization runs.
|
||
"""
|
||
runs = list_opro_runs()
|
||
return ok({"runs": runs, "total": len(runs)})
|
||
|
||
|
||
@app.get("/opro/run/{run_id}", tags=["opro-true"])
|
||
def opro_get_run(run_id: str):
|
||
"""
|
||
Get detailed information about an OPRO run.
|
||
"""
|
||
run = get_opro_run(run_id)
|
||
if not run:
|
||
raise AppException(404, "OPRO run not found", "RUN_NOT_FOUND")
|
||
|
||
# Get sorted trajectory
|
||
trajectory = get_opro_trajectory(run_id)
|
||
|
||
return ok({
|
||
"run_id": run_id,
|
||
"task_description": run["task_description"],
|
||
"iteration": run["iteration"],
|
||
"status": run["status"],
|
||
"best_score": run["best_score"],
|
||
"best_instruction": run["best_instruction"],
|
||
"num_test_cases": len(run["test_cases"]),
|
||
"test_cases": [{"input": tc[0], "expected_output": tc[1]} for tc in run["test_cases"]],
|
||
"trajectory": [{"instruction": inst, "score": score} for inst, score in trajectory[:10]], # Top 10
|
||
"current_candidates": run["current_candidates"]
|
||
})
|
||
|
||
|
||
@app.post("/opro/test_cases", tags=["opro-true"])
|
||
def opro_add_test_cases(req: OPROAddTestCasesReq):
|
||
"""
|
||
Add or update test cases for an OPRO run.
|
||
"""
|
||
run = get_opro_run(req.run_id)
|
||
if not run:
|
||
raise AppException(404, "OPRO run not found", "RUN_NOT_FOUND")
|
||
|
||
# Convert test cases
|
||
test_cases = [(tc.input, tc.expected_output) for tc in req.test_cases]
|
||
|
||
# Update test cases
|
||
set_opro_test_cases(req.run_id, test_cases)
|
||
|
||
return ok({
|
||
"run_id": req.run_id,
|
||
"num_test_cases": len(test_cases),
|
||
"test_cases": [{"input": tc[0], "expected_output": tc[1]} for tc in test_cases]
|
||
})
|
||
|
||
|
||
@app.post("/opro/generate_and_evaluate", tags=["opro-true"])
|
||
def opro_generate_and_evaluate(req: OPROGenerateAndEvaluateReq):
|
||
"""
|
||
Generate candidates and auto-evaluate them (for chat-like UX).
|
||
|
||
This is the main endpoint for the chat interface. It:
|
||
1. Generates candidates based on trajectory
|
||
2. Auto-evaluates them (if test cases exist and auto_evaluate=True)
|
||
3. Returns top-k sorted by score (or diversity if no evaluation)
|
||
"""
|
||
run = get_opro_run(req.run_id)
|
||
if not run:
|
||
raise AppException(404, "OPRO run not found", "RUN_NOT_FOUND")
|
||
|
||
top_k = req.top_k or config.TOP_K
|
||
pool_size = req.pool_size or config.GENERATION_POOL_SIZE
|
||
|
||
# Get trajectory for optimization
|
||
trajectory = get_opro_trajectory(req.run_id)
|
||
|
||
# Generate candidates
|
||
try:
|
||
candidates = generate_system_instruction_candidates(
|
||
task_description=run["task_description"],
|
||
trajectory=trajectory if trajectory else None,
|
||
top_k=pool_size, # Generate pool_size candidates first
|
||
pool_size=pool_size,
|
||
model_name=run["model_name"]
|
||
)
|
||
except Exception as e:
|
||
raise AppException(500, f"Failed to generate candidates: {e}", "GENERATION_ERROR")
|
||
|
||
# Decide whether to evaluate
|
||
should_evaluate = req.auto_evaluate and len(run["test_cases"]) > 0
|
||
|
||
if should_evaluate:
|
||
# Auto-evaluate all candidates
|
||
scored_candidates = []
|
||
for candidate in candidates:
|
||
try:
|
||
score = evaluate_system_instruction(
|
||
system_instruction=candidate,
|
||
test_cases=run["test_cases"],
|
||
model_name=run["model_name"]
|
||
)
|
||
scored_candidates.append({"instruction": candidate, "score": score})
|
||
|
||
# Add to trajectory
|
||
add_opro_evaluation(req.run_id, candidate, score)
|
||
except Exception as e:
|
||
# If evaluation fails, assign score 0
|
||
scored_candidates.append({"instruction": candidate, "score": 0.0})
|
||
|
||
# Sort by score (highest first)
|
||
scored_candidates.sort(key=lambda x: x["score"], reverse=True)
|
||
|
||
# Return top-k
|
||
top_candidates = scored_candidates[:top_k]
|
||
|
||
# Update iteration
|
||
update_opro_iteration(req.run_id, [c["instruction"] for c in top_candidates])
|
||
|
||
return ok({
|
||
"run_id": req.run_id,
|
||
"candidates": top_candidates,
|
||
"iteration": run["iteration"] + 1,
|
||
"evaluated": True,
|
||
"best_score": run["best_score"]
|
||
})
|
||
else:
|
||
# No evaluation - use diversity-based selection (already done by clustering)
|
||
# Just return the candidates without scores
|
||
top_candidates = [
|
||
{"instruction": candidate, "score": None}
|
||
for candidate in candidates[:top_k]
|
||
]
|
||
|
||
# Update iteration
|
||
update_opro_iteration(req.run_id, [c["instruction"] for c in top_candidates])
|
||
|
||
return ok({
|
||
"run_id": req.run_id,
|
||
"candidates": top_candidates,
|
||
"iteration": run["iteration"] + 1,
|
||
"evaluated": False,
|
||
"best_score": run["best_score"]
|
||
})
|
||
|
||
|
||
@app.post("/opro/execute", tags=["opro-true"])
|
||
def opro_execute(req: OPROExecuteReq):
|
||
"""
|
||
Execute a system instruction with user input.
|
||
|
||
This uses the selected instruction as a system prompt and calls the LLM.
|
||
"""
|
||
try:
|
||
# Construct full prompt with system instruction
|
||
full_prompt = f"{req.instruction}\n\n{req.user_input}"
|
||
|
||
# Call LLM
|
||
response = call_qwen(
|
||
full_prompt,
|
||
temperature=0.2,
|
||
max_tokens=1024,
|
||
model_name=req.model_name
|
||
)
|
||
|
||
return ok({
|
||
"instruction": req.instruction,
|
||
"user_input": req.user_input,
|
||
"response": response
|
||
})
|
||
except Exception as e:
|
||
raise AppException(500, f"Execution failed: {e}", "EXECUTION_ERROR")
|