Files
opro_demo/README.md
leehwui 1376d60ed5 feat: implement true OPRO with Gemini-style UI
- Add true OPRO system instruction optimization (vs query rewriting)
- Implement iterative optimization with performance trajectory
- Add new OPRO API endpoints (/opro/create, /opro/generate_and_evaluate, /opro/execute)
- Create modern Gemini-style chat UI (frontend/opro.html)
- Optimize performance: reduce candidates from 20 to 10 (2x faster)
- Add model selector in UI toolbar
- Add collapsible sidebar with session management
- Add copy button for instructions
- Ensure all generated prompts use simplified Chinese
- Update README with comprehensive documentation
- Add .gitignore for local_docs folder
2025-12-06 17:24:28 +08:00

284 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# OPRO Prompt Optimizer
## 功能概述
OPRO (Optimization by PROmpting) 是一个基于大语言模型的提示词优化系统。本项目实现了真正的 OPRO 算法通过迭代优化系统指令System Instructions来提升 LLM 在特定任务上的性能。
### 核心功能
- **系统指令优化**:使用 LLM 作为优化器,基于历史性能轨迹生成更优的系统指令
- **多轮迭代优化**:支持多轮优化,每轮基于前一轮的性能反馈生成新的候选指令
- **智能候选选择**:通过语义聚类和多样性选择,从大量候选中筛选出最具代表性的指令
- **性能评估**:支持自定义测试用例对系统指令进行自动评估
- **会话管理**:支持多个优化任务的并行管理和历史记录
### 用户界面
- **现代化聊天界面**:类似 Google Gemini 的简洁设计
- **侧边栏会话管理**:可折叠的侧边栏,支持多会话切换
- **实时优化反馈**:每轮优化生成 3-5 个候选指令,用户可选择继续优化或执行
- **模型选择**:支持在界面中选择不同的 LLM 模型
## 主要优化改进
### 1. 真正的 OPRO 实现
原始代码实现的是查询重写Query Rewriting而非真正的 OPRO。我们添加了完整的 OPRO 功能:
- **系统指令生成**`generate_system_instruction_candidates()` - 生成多样化的系统指令候选
- **性能评估**`evaluate_system_instruction()` - 基于测试用例评估指令性能
- **轨迹优化**:基于历史 (instruction, score) 轨迹生成更优指令
- **元提示工程**:专门设计的元提示用于指导 LLM 生成和优化系统指令
### 2. 性能优化
- **候选池大小优化**:从 20 个候选减少到 10 个,速度提升约 2 倍
- **智能聚类选择**:使用 AgglomerativeClustering 从候选池中选择最具多样性的 Top-K
- **嵌入服务回退**Xinference → Ollama 自动回退机制,确保服务可用性
### 3. API 架构改进
- **新增 OPRO 端点**
- `POST /opro/create` - 创建 OPRO 优化任务
- `POST /opro/generate_and_evaluate` - 生成并自动评估候选
- `POST /opro/execute` - 执行系统指令
- `GET /opro/runs` - 获取所有优化任务
- `GET /opro/run/{run_id}` - 获取特定任务详情
- **会话状态管理**:完整的 OPRO 运行状态跟踪(轨迹、测试用例、迭代次数)
- **向后兼容**:保留原有查询重写功能,标记为 `opro-legacy`
### 4. 前端界面重构
- **Gemini 风格设计**:简洁的白色/灰色配色,圆角设计,微妙的阴影效果
- **可折叠侧边栏**:默认折叠,支持会话列表管理
- **多行输入框**:支持多行文本输入,底部工具栏包含模型选择器
- **候选指令卡片**:每个候选显示编号、内容、分数,提供"继续优化"、"复制"、"执行"按钮
- **简体中文界面**:所有 UI 文本和生成的指令均使用简体中文
## 快速开始
### 环境要求
- **Python** ≥ 3.10(推荐使用 conda 虚拟环境)
- **Ollama** 本地服务及模型(如 `qwen3:8b``qwen3-embedding:4b`
- **可选**Xinference embedding 服务
### 安装依赖
```bash
# 创建 conda 环境(推荐)
conda create -n opro python=3.10
conda activate opro
# 安装 Python 依赖
pip install fastapi uvicorn requests numpy scikit-learn pydantic
```
### 启动 Ollama 服务
```bash
# 确保 Ollama 已安装并运行
ollama serve
# 拉取所需模型
ollama pull qwen3:8b
ollama pull qwen3-embedding:4b
```
### 启动应用
```bash
# 启动后端服务
uvicorn _qwen_xinference_demo.api:app --host 127.0.0.1 --port 8010
# 或使用 0.0.0.0 允许外部访问
uvicorn _qwen_xinference_demo.api:app --host 0.0.0.0 --port 8010
```
### 访问界面
- **OPRO 优化界面**http://127.0.0.1:8010/ui/opro.html
- **传统三栏界面**http://127.0.0.1:8010/ui/
- **API 文档**http://127.0.0.1:8010/docs
- **OpenAPI JSON**http://127.0.0.1:8010/openapi.json
### 使用示例
1. **创建新会话**:在 OPRO 界面点击"新建会话"或侧边栏的 + 按钮
2. **输入任务描述**:例如"将中文翻译成英文"
3. **查看候选指令**:系统生成 3-5 个优化的系统指令
4. **继续优化**:点击"继续优化"进行下一轮迭代
5. **执行指令**:点击"执行此指令"测试指令效果
6. **复制指令**:点击"复制"按钮将指令复制到剪贴板
## 配置说明
配置文件:`config.py`
### 关键配置项
```python
# Ollama 服务配置
OLLAMA_HOST = "http://127.0.0.1:11434"
DEFAULT_CHAT_MODEL = "qwen3:8b"
DEFAULT_EMBED_MODEL = "qwen3-embedding:4b"
# OPRO 优化参数
GENERATION_POOL_SIZE = 10 # 生成候选池大小
TOP_K = 5 # 返回给用户的候选数量
CLUSTER_DISTANCE_THRESHOLD = 0.15 # 聚类距离阈值
# Xinference 配置(可选)
XINFERENCE_EMBED_URL = "http://127.0.0.1:9997/models/bge-base-zh/embed"
```
## 项目结构
```
.
├── _qwen_xinference_demo/
│ ├── api.py # FastAPI 主应用
│ └── opro/
│ ├── user_prompt_optimizer.py # OPRO 核心逻辑
│ ├── prompt_utils.py # 元提示生成
│ ├── session_state.py # 会话状态管理
│ ├── ollama_client.py # Ollama 客户端
│ └── xinference_client.py # Xinference 客户端
├── frontend/
│ ├── opro.html # OPRO 优化界面
│ └── index.html # 传统三栏界面
├── examples/
│ ├── opro_demo.py # OPRO 功能演示
│ └── client_demo.py # API 调用示例
├── config.py # 全局配置
├── API.md # API 文档
└── README.md # 本文件
```
## API 端点
### OPRO 相关(推荐使用)
- `POST /opro/create` - 创建优化任务
- `POST /opro/generate_and_evaluate` - 生成并评估候选
- `POST /opro/execute` - 执行系统指令
- `GET /opro/runs` - 获取所有任务
- `GET /opro/run/{run_id}` - 获取任务详情
### 传统端点(向后兼容)
- `POST /query` - 查询重写(首轮)
- `POST /select` - 选择候选并回答
- `POST /reject` - 拒绝并重新生成
- `POST /message` - 聊天消息
### 通用端点
- `GET /health` - 健康检查
- `GET /version` - 版本信息
- `GET /models` - 可用模型列表
- `POST /set_model` - 设置模型
详细 API 文档请访问http://127.0.0.1:8010/docs
## 常见问题
### 1. 无法连接 Ollama 服务
确保 Ollama 服务正在运行:
```bash
ollama serve
```
检查配置文件中的 `OLLAMA_HOST` 是否正确。
### 2. 模型不可用
通过 `/models` 端点查看可用模型列表,使用 `/set_model` 切换模型。
### 3. 生成速度慢
- 调整 `GENERATION_POOL_SIZE` 减少候选数量
- 使用更小的模型(如 `qwen3:4b`
- 确保 Ollama 使用 GPU 加速
### 4. 界面显示异常
硬刷新浏览器缓存:
- **Mac**: `Cmd + Shift + R`
- **Windows/Linux**: `Ctrl + Shift + R`
---
<details>
<summary><b>原始 README点击展开</b></summary>
- 项目简介
- OPRO Prompt Optimizer面向提示优化的交互式系统支持多轮拒选/再生成、语义聚类去重与 TopK 代表选择。
- 后端 FastAPI 提供 REST 接口,前端三栏 UI 便于会话管理与候选挑选。
- 架构概览
- Frontend /ui/ → POST /query 首轮候选 → POST /select 选择并回答 → POST /reject 再生成 → POST /query_from_message 基于最近消息优化 → POST /message 聊天
- OPRO 流程:指令构造 → Qwen 批量生成 → EmbeddingXinference→Ollama 回退)→ 聚类去重 → TopK
- 核心实现位置: _qwen_xinference_demo/opro/user_prompt_optimizer.py:45-54 (候选生成)、 _qwen_xinference_demo/opro/xinference_client.py:7-28 embedding 回退)
- 环境与依赖
- Python ≥ 3.10(建议使用 conda 虚拟环境)
- 必需Ollama 本地服务与模型(如 qwen3:8b qwen3-embedding:4b
- 可选Xinference embedding 服务( http://127.0.0.1:9997/models/bge-base-zh/embed
- Python 依赖: fastapi 、 uvicorn 、 requests 、 numpy 、 scikit-learn 、 pydantic
- 安装与启动
- 安装依赖
- pip install fastapi uvicorn requests numpy scikit-learn pydantic
- 启动后端服务
- uvicorn _qwen_xinference_demo.api:app --host 0.0.0.0 --port 8010
- 访问页面
- 前端三栏 UI http://127.0.0.1:8010/ui/
- OpenAPI 文档: http://127.0.0.1:8010/docs
- OpenAPI JSON http://127.0.0.1:8010/openapi.json
- 配置
- 文件: config.py
- 关键项
- APP_TITLE 、 APP_DESCRIPTION 、 APP_VERSION 、 APP_CONTACT (应用元信息,见 _qwen_xinference_demo/api.py:14-26
- OLLAMA_HOST 、 OLLAMA_GENERATE_URL 、 OLLAMA_TAGS_URL Ollama 端点)
- DEFAULT_CHAT_MODEL 、 DEFAULT_EMBED_MODEL (默认模型,用于 _qwen_xinference_demo/opro/ollama_client.py:4-7 与 _qwen_xinference_demo/opro/xinference_client.py:1-6,20-21
- XINFERENCE_EMBED_URL (优先 embedding 端点)
- TOP_K 、 CLUSTER_DISTANCE_THRESHOLD (候选选择参数,引用 _qwen_xinference_demo/opro/user_prompt_optimizer.py:19,45
- 统一响应与错误处理
- 成功: {"success": true, "data": {...}}
- 失败: {"success": false, "error": "...", "error_code": "..."} ,状态码保持 HTTP 值
- 应用级异常: AppException(status_code, detail, error_code) _qwen_xinference_demo/api.py:23-39
- 示例:会话不存在抛出 SESSION_NOT_FOUND Ollama 调用异常抛出 OLLAMA_ERROR
- API 与示例
- 全量端点与示例:见 API.md
- 健康与版本
- GET /health 返回 {status, version} _qwen_xinference_demo/api.py:129-134
- GET /version 返回 {version} _qwen_xinference_demo/api.py:135-138
- 示例脚本
- 入口: examples/client_demo.py
- 功能:健康检查 → 创建会话 → 选择候选 → 继续优化 → 聊天 → 会话列表
- 目录结构
- /_qwen_xinference_demo/api.py FastAPI 主应用与路由
- /_qwen_xinference_demo/opro/user_prompt_optimizer.py OPRO 候选生成与聚类选择
- /_qwen_xinference_demo/opro/xinference_client.py EmbeddingXinference→Ollama 回退)
- /_qwen_xinference_demo/opro/ollama_client.py Ollama 调用与模型列表
- /_qwen_xinference_demo/opro/session_state.py :会话态管理
- /frontend/index.html :三栏 UI 页面
- /API.md :接口文档
- /examples/client_demo.py :示例调用脚本
- /config.py :全局配置
- 常见问题
- 无法访问 /ui/react :使用 /ui/ React 示例仅作演示入口 _qwen_xinference_demo/api.py:133-144
- 模型不可用: /models 查看列表并通过 /set_model 应用;错误返回 MODEL_NOT_AVAILABLE
- 第二轮无相关候选:使用 POST /query_from_message 基于最近消息再生候选 _qwen_xinference_demo/api.py:193-206
- 立即回答诉求:用 POST /answer 先答后给候选 _qwen_xinference_demo/api.py:211-219
- 端口与地址访问差异:在启动命令中明确 --host 0.0.0.0 --port 8010 ,本地浏览器建议访问 127.0.0.1
</details>