Files
opro_demo/QUICK_START.md
leehwui 26f8e0c648 feat: add Docker support for offline deployment with qwen3:14b
Major additions:
- All-in-One Docker image with Ollama + models bundled
- Separate deployment option for existing Ollama installations
- Changed default model from qwen3:8b to qwen3:14b
- Comprehensive deployment documentation

Files added:
- Dockerfile: Basic app-only image
- Dockerfile.allinone: Complete image with Ollama + models
- docker-compose.yml: Easy deployment configuration
- docker-entrypoint.sh: Startup script for all-in-one image
- requirements.txt: Python dependencies
- .dockerignore: Exclude unnecessary files from image

Scripts:
- export-ollama-models.sh: Export models from local Ollama
- build-allinone.sh: Build complete offline-deployable image
- build-and-export.sh: Build and export basic image

Documentation:
- DEPLOYMENT.md: Comprehensive deployment guide
- QUICK_START.md: Quick reference for common tasks

Configuration:
- Updated config.py: DEFAULT_CHAT_MODEL = qwen3:14b
- Updated frontend/opro.html: Page title to 系统提示词优化
2025-12-08 10:10:38 +08:00

118 lines
2.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 快速开始指南
## 离线部署All-in-One 方案)
### 在开发机器上(有外网)
```bash
# 1. 下载模型
ollama pull qwen3:14b
ollama pull qwen3-embedding:4b
# 2. 导出模型
./export-ollama-models.sh
# 3. 构建并导出 Docker 镜像
./build-allinone.sh
# 4. 传输到目标服务器
# 文件: system-prompt-optimizer-allinone.tar (约 10-20GB)
scp system-prompt-optimizer-allinone.tar user@server:/path/
```
### 在目标服务器上(无外网)
```bash
# 1. 加载镜像
docker load -i system-prompt-optimizer-allinone.tar
# 2. 启动服务
docker run -d \
--name system-prompt-optimizer \
-p 8010:8010 \
-p 11434:11434 \
-v $(pwd)/outputs:/app/outputs \
--restart unless-stopped \
system-prompt-optimizer:allinone
# 3. 等待启动(约 60 秒)
sleep 60
# 4. 验证
curl http://localhost:8010/health
curl http://localhost:11434/api/tags
# 5. 访问界面
# http://<服务器IP>:8010/ui/opro.html
```
## 常用命令
```bash
# 查看日志
docker logs -f system-prompt-optimizer
# 重启服务
docker restart system-prompt-optimizer
# 停止服务
docker stop system-prompt-optimizer
# 删除容器
docker rm -f system-prompt-optimizer
# 进入容器
docker exec -it system-prompt-optimizer bash
# 检查模型
docker exec -it system-prompt-optimizer ollama list
```
## 端口说明
- **8010**: Web 界面和 API
- **11434**: Ollama 服务(仅 All-in-One 方案需要暴露)
## 文件说明
- `system-prompt-optimizer-allinone.tar`: 完整镜像10-20GB
- `outputs/`: 用户反馈日志目录
## 故障排查
### 服务无法启动
```bash
# 查看日志
docker logs system-prompt-optimizer
# 检查端口占用
netstat -tulpn | grep 8010
netstat -tulpn | grep 11434
```
### 模型不可用
```bash
# 进入容器检查
docker exec -it system-prompt-optimizer ollama list
# 应该看到:
# qwen3:14b
# qwen3-embedding:4b
```
### 性能慢
- 确保服务器有足够的 RAM建议 16GB+
- 如果有 GPU使用支持 GPU 的 Docker 运行时
- 调整 `config.py` 中的 `GENERATION_POOL_SIZE`
## 更多信息
详细文档请参考:
- `DEPLOYMENT.md`: 完整部署指南
- `README.md`: 项目说明
- http://localhost:8010/docs: API 文档